|本期目录/Table of Contents|

[1]王连英,李洪宝,辛靖,等.CH4-CO2干重整Ni基催化剂性能调控及应用技术研究进展[J].石化技术与应用,2024,5:389-394.
 WANG Lian-ying,LI Hong-bao,XIN Jing,et al.Research progress on performance regulation and application technology of Ni-based catalysts for CH4-CO2 dry reforming[J].Petrochemical technology & application,2024,5:389-394.
点击复制

CH4-CO2干重整Ni基催化剂性能调控及应用技术研究进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年5期
页码:
389-394
栏目:
出版日期:
2024-09-10

文章信息/Info

Title:
Research progress on performance regulation and application technology of Ni-based catalysts for CH4-CO2 dry reforming
文章编号:
1009-0045(2024)05-0389-06
作者:
王连英李洪宝辛靖杨国明宋宇陈禹霏
(中海石油化工与新材料科学研究院,北京 102209)
Author(s):
WANG Lian-ying LI Hong-bao XIN Jing YANG Guo-ming SONG Yu CHEN Yu-fei
(Institute of Chemicals & Advanced Materials,CNOOC,Beijing 102209, China)
关键词:
CH4-CO2干重整Ni基催化剂积炭烧结等离子体光热催化
Keywords:
CH4-CO2 dry reformingNi-based catalystcarbon depositionsinteringplasmaphotothermal catalysis
分类号:
O 643.3
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.05.0389
文献标识码:
A
摘要:
基于CH4-CO2干重整(DRM)反应的热力学和反应机理,从Ni颗粒尺寸、空间限域结构、形成氧空位和增加活性氧物种等方面综述了避免Ni基催化剂积炭和烧结的调控技术,以及等离子体-催化剂耦合和光热协同催化DRM的应用技术,展望了DRM技术的发展方向。指出利用可再生电能协同发展等离子体以及光热催化DRM技术具有良好的发展前景。
Abstract:
Based on the thermodynamics and reaction mechanism of CH4-CO2 dry reforming (DRM) reaction, the control technologies to avoid Ni based catalyst coking and sintering, as well as the application technologies of plasma catalyst coupling and photothermal synergistic catalysis for DRM were summarized with 31 references from the aspects of Ni particle size, spatial confinement structure, formation of oxygen vacancies, and increase of active oxygen species. The development direction of DRM technology was prospected. It was pointed out that the use of renewable electricity to synergistically develop plasma and photothermal catalysis for DRM technology had good development prospects.

参考文献/References

[1] Liu W M, Li L, Lin S X, et al. Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming[J]. Journal of Energy Chemistry,2021,65: 34-47.[2] Zhao Y T, Wang Z C, Yang W J, et al. Promotional effect of NiSn interaction over Ni supported on Sn-incorporated MCM-41 catalysts for CO2 reforming of CH4[J]. ChemNanoMat,2021,7(8):927-934.[3] Yan X L, Hu T, Liu P, et al. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2[J]. Applied Catalysis B: Environmental,2019,246:221-231.[4] He L, Li M R, Li W C, et al. Robust and coke-free Ni catalyst stabilized by 1-2 nm-thick multielement oxide for methane dry reforming[J]. ACS catalysis,2021,11(20): 12409-12416.[5] 黄兴, 吕政国, 李珍珍, 等. 甲烷干法重整催化剂抗积炭性能的研究进展[J]. 低碳化学与化工,2023,48(2): 14-22.[6] Mortensen P M, Dybkjaer I. Industrial scale experience on steam reforming of CO2-rich gas[J]. Applied Catalysis A: General,2015,495: 141-151.[7] Wang D, Littlewood P, Marks T J. Coking can enhance product yields in the dry reforming of methane[J]. ACS catalysis,2022,12(14): 8352-8362.[8] 史克英, 苏群, 赵占芬, 等. 天然气二氧化碳转化制合成气的研究─催化剂抗积炭性能(英文)[J]. Journal of Natural Gas Chemistry,1999(2): 105-114.[9] Nikoo M K, Amin N A S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation[J]. Fuel Processing Technology,2011,92(3): 678-691.[10] 苏通明, 王传棽, 宫博, 等. 甲烷干重整Ni基催化剂上积炭调控的研究进展[J]. 低碳化学与化工,2023,48(3): 1-10.[11] Zou Z P, Zhang T, Lv L, et al. Preparation adjacent Ni-Co bimetallic nano catalyst for dry reforming of methane [J]. Fuel,2023,343(1): 128013.[12] Wu P, Tao Y W, Ling H J, et al. Cooperation of Ni and CaO at interface for CO2 reforming of CH4: A combined theoretical and experimental study[J]. ACS Catalysis,2019,9(11):10060-10069.[13] Sagar V T, Pintar A. Enhanced surface properties of CeO2 by MnOx doping and their role in mechanism of methane dry reforming deduced by means of in-situ DRIFTS[J]. Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2020,599:117603.[14] Zhang S S, Ying M, Yu J, et al. NixAl1O2-δ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism[J]. Applied Catalysis B: Environmental,2021,291: 120074.[15] 丁晨旭, 汤睿, 钱渊, 等. Ni基催化剂中Ni颗粒粒径对甲烷干气重整反应的影响及其应用展望[J]. 天然气化工(C 1化学与化工),2022,47(2): 1-10.[16] Lu Y, Guo D, Ruan Y Z, et al. Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane[J].Journal of CO2 Utilization, 2018, 24:190-199.[17] 彭冲, 刘鹏, 胡永康, 等. 低温等离子体构筑高效Ni基催化剂进展[J]. 化工进展,2021,40(7): 3553-3563.[18] Dang C X, Xia H H, Luo J L.Dendritic layered Ni/Al2O3 derived from NiAl2O4 as high-performance catalyst for dry reforming of methane[J].Fuel Processing Technology, 2023,241: 107615.[19] 仇媛. 核壳催化剂空间限域结构的调控及在CH4-CO2重整反应的应用[D].太原:山西大学, 2019.[20] Wang C Z,Qiu Y, Zhang X M,et al.Geometric design of a Ni@silica nano-capsule catalyst with superb methane dry reforming stability: Enhanced confinement effect over the nickel site anchoring inside a capsule shell with an appropriate inner cavity[J].Catalysis Science & Technology,2018,8(19): 4877-4890.[21] Wu J W, Gao J,W Lian S S. Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C-H activation[J]. Applied Catalysis B: Environmental,2022,314:121516.[22] Liang D F, Wang Y S, Chen M Q, et al. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts[J]. Applied Catalysis B: Environmental,2023,322: 122088.[23] Diao Y N, Zhang X, Liu Y, et al. Plasma-assisted dry reforming of methane over Mo2C-Ni/Al2O3 catalysts: Effects of β-Mo2C promoter[J]. Applied Catalysis B: Environmental,2022,301: 120779.[24] Feng J Y, Sun X, Li Z, et al. Plasma-assisted reforming of methane[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany),2022,9(34):2203221.[25] Li J W, Dou L G, Gao Y, et al. Revealing the active sites of the structured Ni-based catalysts for one-step CO2/CH4 conversion into oxygenates by plasma-catalysis[J]. Journal of CO2 Utilization,2021,52: 101675.[26] Zhang S, Gao Y, Sun H, et al. Dry reforming of methane by microsecond pulsed dielectric barrier discharge plasma: Optimizing the reactor structures[J]. High Voltage,2022,7(4): 718-729.[27] 高远, 窦立广, 李江伟, 等. 低温等离子体-催化剂协同催化CO2转化进展[J]. 高电压技术,2022,48(4): 1607-1619.[28] 何展军,黄敏,林铁军,等.光热催化甲烷干重整研究进展[J].物理化学学报,2023,39(9):22-34.[29] Yao Y, Li B, Gao X W, et al. Highly efficient solar-driven dry reforming of methane on a Rh/LaNiO3 catalyst through a light-induced metal-to-metal charge transfer process[J]. Advanced Materials,2023,35(39): 2303654.[30] Rao Z Q, Cao Y H, Huang Z A, et al. Insights into the nonthermal effects of light in dry reforming of methane to enhance the H2/CO ratio near unity over Ni/Ga2O3[J]. ACS Catalysis,2021,11(8):4730-4738.[31] Wu S W, Li Y Z, Zhang Q, et al. Formation of NiCo alloy nanoparticles on Co doped Al2O3 leads to high fuel production rate, large light?鄄to?鄄fuel efficiency, and excellent durability for photothermocatalytic CO2 reduction[J]. Advanced Energy Materials,2020,10(42):2002602.

备注/Memo

备注/Memo:
中国海洋石油集团公司科技资助项目(项目编号:KJGG-2022-12 CCUS 3-4-2)
更新日期/Last Update: 2024-09-10