[1] Chen F,Xia L,Zhang Y,et al. Efficient degradation of refractory organics for carbonate-containing wastewater via generation carbonate radical based on a photoelectro catalytic TNA-MCF system[J]. Applied Catalysis B(Environmental),2019,259:118071.[2] Manna M,Sen S. Advanced oxidation process: A sustainable technology for treating refractory organic compounds present in industrial wastewater[J]. Environ Sci Pollut Res Int,2023,30:25477-25505.[3] Li X,Jia Y,Qin Y,et al. Iron-carbon microelectrolysis for wastewater remediation: Preparation,performance and interaction mechanisms[J]. Chemosphere, 2021,278:130483.[4] 王毅博,冯民权,刘永红,等. 铁碳微电解技术在难治理废水中的研究进展[J]. 化工进展,2018,37(8):3188-3196.[5] Zhu X,Chen X,Yang Z,et al. Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis[J]. Chemical Engineering Journal,2018,338:46-54.[6] Yang S,Sun H,Su S,et al. Fabrication,characterizations and performance of a high-efficiency micro-electrolysis filler for isobutyl xanthate (IBX) degradation[J]. J Hazard Mater, 2021,403:123640.[7] 汪彩琴,高心怡,陈辉,等. 微电解技术处理难降解工业废水的研究进展[J]. 化工环保,2016,36(5):477-481.[8] Ying D W, Peng J, Xu X Y, et al. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron[J]. Journal of Hazardous Materials, 2012, 229/230: 426-433.[9] Yang Z,Ma Y,Liu Y,et al. Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system[J]. Chemical Engineering Journal,2017,315:403-414.[10] Ren D,Huang Y,Li S,et al. Removal mechanism of persistent organic pollutants by Fe-C micro-electrolysis[J]. Environ Technol,2022,43(7):1050-1067.[11] 贾艳萍,张真,毕朕豪,等. 铁碳微电解处理印染废水的效能及生物毒性变化[J]. 化工进展,2020,39(2):790-797.[12] Xu X,Cheng Y,Zhang T,et al. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation[J]. Chemosphere,2016,152:23-30.[13] 田京雷,刘金哲,李雪松. 基于微电解技术的焦化废水强化预处理实验[J]. 工业水处理,2018,38(11):70-73.[14] 于艳杰,吴莹,方登志,等. 曝气微电解混凝沉淀处理含砷铬废水[J]. 工业水处理,2018,38(2):82-84.[15] Li T,Duan Z,Qin R,et al. Enhanced characteristics and mechanism of Cu(II) removal from aqueous solutions in electrocatalytic internal micro-electrolysis fluidized-bed[J]. Chemosphere,2020,250:126225.[16] 苏志敏,韩严和,刘立娜. 铁碳微电解填料改性的研究进展[J]. 现代化工,2022,42(5):35-39.[17] 曹立伟,张淑娟,张有智,等. 微电解填料的研究进展[J]. 现代化工,2015,35(6):13-17.[18] 杨瑞洪,仇实,罗志臣,等. 规整化Fe/Al/C多元微电解填料的制备及表征[J]. 工业水处理, 2020,40(4):60-63.[19] Wang G,Qian L,Yong X,et al. Synthesis of a ternary microscopic ball-shaped micro-electrolysis filler and its application in wastewater treatment[J]. Separation and Purification Technology,2021,275:119131.[20] Yang R,Zhu J,Li Y,et al. A study on the preparation of regular multiple micro-electrolysis filler and the application in pretreatment of oil refinery wastewater[J]. International Journal of Environmental Research and Public Health, 2016,13(5):457.[21] Lü H,Niu H,Zhao X,et al. Carbon zero-valent iron materials possessing high-content fine Fe0 nanoparticles with enhanced microelectrolysis-Fenton-like catalytic performance for water purification[J]. Applied Catalysis B(Environmental), 2021,286:119940.[22] Ren L,Dong J,Chi Z,et al. Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer[J]. Journal of Environmental Sciences,2018,73:96-106.[23] Xiong K,Gao Y,Zhou L,et al. Zero-valent iron particles embedded on the mesoporous silica-carbon for chromium (Ⅵ) removal from aqueous solution[J]. Journal of Nanoparticle Research,2016,18(9):1-8.[24] 付丽霞,韩德宝,郝彦龙,等. 改进型铁碳微电解设备预处理硝基苯废水[J]. 环境工程,2019,37(8):47-50.[25] 韩本利,李甲亮,周春海,等. 基于流态改进的仓式微电解反应器处理油田废水研究[J]. 石油与天然气化工, 2018,47(5):100-105.[26] Han Y,Li H,Liu M,et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor[J]. Separation and Purification Technology,2016,170:241-247.[27] 王刚,徐晓军,杨津津,等. 电解—强化微电解耦合法处理含铜废水[J]. 中国有色金属学报,2013,23(10):2936-2941.[28] Xie R,Wu M,Qu G,et al. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter[J]. Journal of Environmental Sciences,2018,66:165-172.[29] 郑贝贝,霍莹,付连超,等. 微波耦合铁碳微电解预处理石化废水的试验[J]. 净水技术,2020,39(2):98-102.[30] 管堂珍,徐晓军,孟均旺,等. 微波强化微电解技术处理硝基苯废水[J]. 环境工程学报,2013,7(6):2239-2244.[31] Qin G,Gong D. Pretreatment of petroleum refinery wastewater by microwave-enhanced Fe0/GAC micro-electrolysis[J]. Desalination & Water Treatment,2014,52(13/15):2512-2518.[32] Xu L J,Chu W,Graham N. A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process[J]. Ultrasonics Sonochemistry,2013,20(3):892-899.[33] 王兵,高洁,任宏洋,等. 超声-微电解耦合处理难降解污染物研究进展[J]. 环境科学与技术,2012,35(Z 2):217-220.[34] 杨浩,高秀丽,史殿彬,等. 电化学辅助微电解法处理焦化废水[J]. 化工环保,2016,36(6):650-654.[35] 余丽胜,焦纬洲,刘有智,等. 超声强化铁碳微电解处理硝基苯废水[J]. 含能材料,2016,24(10):1011-1016.[36] Malakootian M,Mahdizadeh H,Khavari M,et al. Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal of Acid Red 18 from aqueous solutions[J]. Journal of Environmental Chemical Engineering,2019,8(2):103553.[37] 陈蕊,刘春,杨旭,等. 臭氧氧化法预处理工业废水研究进展[J]. 应用化工,2022,51(4):1168-1173.[38] Zhang X B,Dong W Y,Sun F Y,et al. Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter[J]. Journal of Hazardous Materials,2014,276:77-87.[39] Song J,Li W,Li Y,et al. Treatment of landfill leachate RO concentration by Iron-carbon micro-electrolysis (ICME) coupled with H2O2 with emphasis on convex optimization method[J]. Environmental Pollutants & Bioavailability, 2019,31(1):49-55.[40] 尹汉雄,唐玉朝,黄显怀,等. Fe-AC微电解活化过硫酸盐降解直接耐酸大红4 BS[J]. 环境工程学报,2018,12(3):768-778.[41] Zhang W,Li X,Yang Q,et al. Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system[J]. Chemosphere,2019,216:749-756.[42] 李玉英,苏琪,王海燕,等. 微电解-臭氧化协同降解水杨酸的动力学及毒性研究[J]. 工业水处理,2019,39(1):60-64.[43] 荣俊锋,付雅婷,魏世晋,等. 微电解-Fenton净化对氨基苯酚废水研究[J]. 应用化工, 2021,50(8):2140-2143.[44] Li P,Liu Z P,Wang X G,et al. Enhanced decolorization of methyl orange in aqueous solution using iron–carbon micro-electrolysis activation of sodium persulfate[J]. Chemosphere,2017,180:100-107.[45] Ma Y S,Gu Y X,Jiang D,et al. Degradation of 2,4-DCP using persulfate and iron/E-carbon micro-electrolysis coupling system[J]. Journal of Hazardous Materials,2021,413:125381.