|本期目录/Table of Contents|

[1]张卫军,郑石红,施家琦,等.铁碳微电解技术处理难降解废水的应用与改进进展[J].石化技术与应用,2024,6:473-478.
 ZHANG Wei-jun,ZHENG Shi-hong,SHI Jia-qi,et al.Progress in application and improvement of iron-carbon micro-electrolysis for treatment of refractory wastewater[J].Petrochemical technology & application,2024,6:473-478.
点击复制

铁碳微电解技术处理难降解废水的应用与改进进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年6期
页码:
473-478
栏目:
出版日期:
2024-11-10

文章信息/Info

Title:
Progress in application and improvement of iron-carbon micro-electrolysis for treatment of refractory wastewater
文章编号:
1009-0045(2024)06-0473-06
作者:
张卫军1郑石红1施家琦2李阳3 *
1.中国石化中科(广东)炼化有限公司,广东 湛江 524000;  2.中国石油大学(北京)克拉玛依校区 工学院,新疆 克拉玛依 834000;  3.中国石油大学(北京) 重质油国家重点实验室,北京 102249
Author(s):
ZHANG Wei-jun1 ZHENG Shi-hong1 SHI Jia-qi2 LI Yang3
1.Zhongke (Guangdong)Refinery & Petrochemical Co Ltd,SINOPEC,Zhanjiang 524000,China;  2. College of Engineering,China University of Petroleum(Beijing) at Karamay,Karamay,834000,China;3. State Key Laboratory of Heavy Oil Processing,China University of Petroleum(Beijing), Beijing 102249,China
关键词:
铁碳微电解技术难降解废水微电解填料反应器净化处理环保达标排放
Keywords:
iron-carbon micro-electrolysis technologyrefractory wastewatermicro-electrolytic fillerreactor purification treatmentenvironmental compliance discharge
分类号:
TQ 085
DOI:
10.19909/j.cnki.ISSN1009-0045.2024.06.0473
文献标识码:
A
摘要:
概述了铁碳微电解技术处理难降解废水的作用机理,及其在印染、制药、焦化等难降解废水处理的应用现状,重点综述了铁碳微电解技术在填料改性、反应器优化以及物理、化学强化方面的改进研究进展。并指出该技术今后的改进研究及推广应用需注重2个方面:扩大微电解反应适应的pH值范围;与生物法、物化法等其他技术联合使用,实现对难降解废水的低成本、高效率、环保达标排放处理。
Abstract:
The mechanism and application of iron-carbon micro-electrolysis technology in the treatment of refractory wastewater(such as printing and dyeing wastewater,pharmaceutical wastewater and coking wastewater) were summarized. The improvement strategies of iron-carbon micro-electrolysis technology were also reviewed including filler modification,reactor optimization,physical and chemical strengthening methods. The improvement and application of iron-carbon micro-electrolysis technology in the future should focus on: expanding the pH range of the micro-electrolysis reaction;and using it in combination with other technologies,such as biological and physical-chemical methods,so as to realize the treatment of refractory wastewater with low-cost high-efficiency,and meet the discharge standard of environmental protection.

参考文献/References

[1] Chen F,Xia L,Zhang Y,et al. Efficient degradation of refractory organics for carbonate-containing wastewater via generation carbonate radical based on a photoelectro catalytic TNA-MCF system[J]. Applied Catalysis B(Environmental),2019,259:118071.[2] Manna M,Sen S. Advanced oxidation process: A sustainable technology for treating refractory organic compounds present in industrial wastewater[J]. Environ Sci Pollut Res Int,2023,30:25477-25505.[3] Li X,Jia Y,Qin Y,et al. Iron-carbon microelectrolysis for wastewater remediation: Preparation,performance and interaction mechanisms[J]. Chemosphere, 2021,278:130483.[4] 王毅博,冯民权,刘永红,等. 铁碳微电解技术在难治理废水中的研究进展[J]. 化工进展,2018,37(8):3188-3196.[5] Zhu X,Chen X,Yang Z,et al. Investigating the influences of electrode material property on degradation behavior of organic wastewaters by iron-carbon micro-electrolysis[J]. Chemical Engineering Journal,2018,338:46-54.[6] Yang S,Sun H,Su S,et al. Fabrication,characterizations and performance of a high-efficiency micro-electrolysis filler for isobutyl xanthate (IBX) degradation[J]. J Hazard Mater, 2021,403:123640.[7] 汪彩琴,高心怡,陈辉,等. 微电解技术处理难降解工业废水的研究进展[J]. 化工环保,2016,36(5):477-481.[8] Ying D W, Peng J, Xu X Y, et al. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation: A comparative study on a novel sequencing batch reactor based on zero valent iron[J]. Journal of Hazardous Materials, 2012, 229/230: 426-433.[9] Yang Z,Ma Y,Liu Y,et al. Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system[J]. Chemical Engineering Journal,2017,315:403-414.[10] Ren D,Huang Y,Li S,et al. Removal mechanism of persistent organic pollutants by Fe-C micro-electrolysis[J]. Environ Technol,2022,43(7):1050-1067.[11] 贾艳萍,张真,毕朕豪,等. 铁碳微电解处理印染废水的效能及生物毒性变化[J]. 化工进展,2020,39(2):790-797.[12] Xu X,Cheng Y,Zhang T,et al. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation[J]. Chemosphere,2016,152:23-30.[13] 田京雷,刘金哲,李雪松. 基于微电解技术的焦化废水强化预处理实验[J]. 工业水处理,2018,38(11):70-73.[14] 于艳杰,吴莹,方登志,等. 曝气微电解混凝沉淀处理含砷铬废水[J]. 工业水处理,2018,38(2):82-84.[15] Li T,Duan Z,Qin R,et al. Enhanced characteristics and mechanism of Cu(II) removal from aqueous solutions in electrocatalytic internal micro-electrolysis fluidized-bed[J]. Chemosphere,2020,250:126225.[16] 苏志敏,韩严和,刘立娜. 铁碳微电解填料改性的研究进展[J]. 现代化工,2022,42(5):35-39.[17] 曹立伟,张淑娟,张有智,等. 微电解填料的研究进展[J]. 现代化工,2015,35(6):13-17.[18] 杨瑞洪,仇实,罗志臣,等. 规整化Fe/Al/C多元微电解填料的制备及表征[J]. 工业水处理, 2020,40(4):60-63.[19] Wang G,Qian L,Yong X,et al. Synthesis of a ternary microscopic ball-shaped micro-electrolysis filler and its application in wastewater treatment[J]. Separation and Purification Technology,2021,275:119131.[20] Yang R,Zhu J,Li Y,et al. A study on the preparation of regular multiple micro-electrolysis filler and the application in pretreatment of oil refinery wastewater[J]. International Journal of Environmental Research and Public Health, 2016,13(5):457.[21] Lü H,Niu H,Zhao X,et al. Carbon zero-valent iron materials possessing high-content fine Fe0 nanoparticles with enhanced microelectrolysis-Fenton-like catalytic performance for water purification[J]. Applied Catalysis B(Environmental), 2021,286:119940.[22] Ren L,Dong J,Chi Z,et al. Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer[J]. Journal of Environmental Sciences,2018,73:96-106.[23] Xiong K,Gao Y,Zhou L,et al. Zero-valent iron particles embedded on the mesoporous silica-carbon for chromium (Ⅵ) removal from aqueous solution[J]. Journal of Nanoparticle Research,2016,18(9):1-8.[24] 付丽霞,韩德宝,郝彦龙,等. 改进型铁碳微电解设备预处理硝基苯废水[J]. 环境工程,2019,37(8):47-50.[25] 韩本利,李甲亮,周春海,等. 基于流态改进的仓式微电解反应器处理油田废水研究[J]. 石油与天然气化工, 2018,47(5):100-105.[26] Han Y,Li H,Liu M,et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor[J]. Separation and Purification Technology,2016,170:241-247.[27] 王刚,徐晓军,杨津津,等. 电解—强化微电解耦合法处理含铜废水[J]. 中国有色金属学报,2013,23(10):2936-2941.[28] Xie R,Wu M,Qu G,et al. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter[J]. Journal of Environmental Sciences,2018,66:165-172.[29] 郑贝贝,霍莹,付连超,等. 微波耦合铁碳微电解预处理石化废水的试验[J]. 净水技术,2020,39(2):98-102.[30] 管堂珍,徐晓军,孟均旺,等. 微波强化微电解技术处理硝基苯废水[J]. 环境工程学报,2013,7(6):2239-2244.[31] Qin G,Gong D. Pretreatment of petroleum refinery wastewater by microwave-enhanced Fe0/GAC micro-electrolysis[J]. Desalination & Water Treatment,2014,52(13/15):2512-2518.[32] Xu L J,Chu W,Graham N. A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process[J]. Ultrasonics Sonochemistry,2013,20(3):892-899.[33] 王兵,高洁,任宏洋,等. 超声-微电解耦合处理难降解污染物研究进展[J]. 环境科学与技术,2012,35(Z 2):217-220.[34] 杨浩,高秀丽,史殿彬,等. 电化学辅助微电解法处理焦化废水[J]. 化工环保,2016,36(6):650-654.[35] 余丽胜,焦纬洲,刘有智,等. 超声强化铁碳微电解处理硝基苯废水[J]. 含能材料,2016,24(10):1011-1016.[36] Malakootian M,Mahdizadeh H,Khavari M,et al. Efficiency of novel Fe/charcoal/ultrasonic micro-electrolysis strategy in the removal of Acid Red 18 from aqueous solutions[J]. Journal of Environmental Chemical Engineering,2019,8(2):103553.[37] 陈蕊,刘春,杨旭,等. 臭氧氧化法预处理工业废水研究进展[J]. 应用化工,2022,51(4):1168-1173.[38] Zhang X B,Dong W Y,Sun F Y,et al. Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter[J]. Journal of Hazardous Materials,2014,276:77-87.[39] Song J,Li W,Li Y,et al. Treatment of landfill leachate RO concentration by Iron-carbon micro-electrolysis (ICME) coupled with H2O2 with emphasis on convex optimization method[J]. Environmental Pollutants & Bioavailability, 2019,31(1):49-55.[40] 尹汉雄,唐玉朝,黄显怀,等. Fe-AC微电解活化过硫酸盐降解直接耐酸大红4 BS[J]. 环境工程学报,2018,12(3):768-778.[41] Zhang W,Li X,Yang Q,et al. Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system[J]. Chemosphere,2019,216:749-756.[42] 李玉英,苏琪,王海燕,等. 微电解-臭氧化协同降解水杨酸的动力学及毒性研究[J]. 工业水处理,2019,39(1):60-64.[43] 荣俊锋,付雅婷,魏世晋,等. 微电解-Fenton净化对氨基苯酚废水研究[J]. 应用化工, 2021,50(8):2140-2143.[44] Li P,Liu Z P,Wang X G,et al. Enhanced decolorization of methyl orange in aqueous solution using iron–carbon micro-electrolysis activation of sodium persulfate[J]. Chemosphere,2017,180:100-107.[45] Ma Y S,Gu Y X,Jiang D,et al. Degradation of 2,4-DCP using persulfate and iron/E-carbon micro-electrolysis coupling system[J]. Journal of Hazardous Materials,2021,413:125381.

备注/Memo

备注/Memo:
中国石油大学(北京)科学基金资助项目(项目编号:2462020 XKJS 04)
更新日期/Last Update: 2024-11-10