|本期目录/Table of Contents|

[1]徐颖淑,叶名宇,邓佳佳,等.二氧化锰@丝素蛋白/还原氧化石墨烯复合薄膜的制备及性能[J].石化技术与应用,2025,2:98-104.
 XU Ying-shu,YE Ming-yu,DENG Jia-Jia,et al.Preparation and properties of manganese dioxide@silk fibroin/reduced graphene oxide composite film[J].Petrochemical technology & application,2025,2:98-104.
点击复制

二氧化锰@丝素蛋白/还原氧化石墨烯复合薄膜的制备及性能(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2025年2期
页码:
98-104
栏目:
出版日期:
2025-03-10

文章信息/Info

Title:
Preparation and properties of manganese dioxide@silk fibroin/reduced graphene oxide composite film
文章编号:
1009-0045(2025)02-0098-07
作者:
徐颖淑叶名宇邓佳佳贾红兵*
(南京理工大学 化学与化工学院,江苏 南京 210094)
Author(s):
XU Ying-shu YE Ming-yu DENG Jia-Jia JIA Hong-bing
(School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)
关键词:
还原氧化石墨烯二氧化锰丝素蛋白浸渍法柔性电极超级电容器
Keywords:
reduced graphene oxide manganese dioxide silk fibroin immersion method flexible electrode supercapacitor
分类号:
TB 383.2
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2025.02.0098
文献标识码:
B
摘要:
为提高石墨烯基柔性电极的综合性能,通过真空辅助抽滤和化学还原的方式,制备了丝素蛋白/还原氧化石墨烯(SF/rGO)复合薄膜,在硫酸钾/高锰酸钾(K2SO4 /KMnO4)溶液中,以SF/rGO作为碳源,制备了二氧化锰@丝素蛋白/还原氧化石墨烯(MnO2@SF/rGO)复合薄膜,考察了K2SO4 /KMnO4的浸渍时间对MnO2@SF/rGO薄膜的力学性能及电化学性能的影响。结果表明:当浸渍时间为60 min时,制得的MnO2@SF/rGO薄膜具有优异的力学性能与电化学性能,薄膜电极的拉伸强度为(41.4 ± 3.4) MPa,当电流密度为0.25 mA/cm2时,其面积比电容达到548.7 mF /cm2;该薄膜组装成的超级电容器器件在0.25 mA/cm2电流密度下,面积比电容为200 mF/cm2,在5 mA/cm2的电流密度下循环6 000次,仍可保持85%的优异倍率性能。
Abstract:
In order to improve the comprehensive performance of graphene-based flexible electrodes, silk fibroin/reduced graphene oxide (SF/rGO) films were prepared by vacuum-assisted filtration and chemical reduction. Manganese dioxide@silk fibroin/reduced graphene oxide (MnO2@SF/rGO) composite films were prepared in potassium sulfate/potassium permanganate (K2SO4 /KMnO4) solution using SF/rGO as carbon source. The effects of K2SO4 /KMnO4 impregnation time on the mechanical and electrochemical properties of MnO2@SF/rGO films were investigated. The results showed that the films had excellent mechanical and electrochemical properties when loaded with MnO2 for 60 min, and the tensile strength of the film electrodes was 41.4 ± 3.4 MPa, and the areal capacitance of the area reached 548.7 mF/cm2 at a current density of 0.25 mA/cm2. The supercapacitor device assembled by the film had an areal capacitance of 200 mF/cm2 at a current density of 0.25 mA/cm2, and could maintain an excellent rate performance of 85% after 6 000 cycles at a current density of 5 mA/cm2.

参考文献/References

[1] Mao J J, Iocozzia J, Huang J Y, et al. Graphene aerogels for efficient energy storage and conversion[J].Energy & Environmental Science,2018,11(4):772-799.[2] Huang L, Li C, Yuan W J, et al. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels[J]. Nanoscale,2013,5(9):3780-3786.[3] Hu K S, Gupta M K, Kulkarni D D, et al. Ultra-robust graphene oxide-silk fibro in nanocomposite membranes[J]. Advanced Materials, 2013,25(16):2301-2307.[4] Liang B,Fang L, Hu Y C, et al. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres[J]. Nanoscale, 2014,6(8):4264-4274.[5] Wang T Y, Peng Z, Wang Y H, et al. MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery,supercapacitor and sensor[J]. Scientific Reports,2013,3:2693.[6] Chang H W, Huang Y C, Chen J L, et al. Soft X-ray absorption spectroscopic investigation of MnO2 /graphene nanocomposites used in supercapacitor[J]. Catalysis Today,2022,388:63-69.[7] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. Acs Nano, 2010,4(8):4806-4814.[8] Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chemistry of Materials, 2004,16(16):3184-3190.[9] Drnovsek N, Kocen R, Gantar A, et al. Size of silk fibroin β-sheet domains affected by Ca2+[J]. Journal of Materials Chemistry B, 2016,40(4):6597-6608.[10] Kadumudi F B, Hasany M, Pierchala M K, et al. The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels[J]. Advanced Materials, 2021,33(35):2100047.[11] Xu A Z, Yu Y, Li W, et al. Sequential electrodeposition fabrication of graphene/polyaniline/MnO2 ternary supercapacitor electrodes with high rate capability and cyclic stability[J]. Electrochimica Acta, 2022, 435:141378.[12] Shayannia M, Sajjadi H, Motaghitalab V, et al. Effect of multi wall carbon nanotubes on characteristics and morphology of nanofiber scaffolds composited of MWNTs/silk fibroin[J]. Advanced Powder Technology,2017,28(3):775-784.[13] Yang J, Ren S, Su B X, et al. Insight into NO2 formation over different crystal phases of MnO2 during low-temperature NH3-SCR of NO[J]. Catalysis Letters, 2021,151(10):2964-2971.[14] Chen L F, Huang Z H, Liang H W, et al. Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density[J]. Advanced Materials, 2013,25(34):4746-4752.[15] Hou Y, Cheng Y W, Hobson T, et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes[J]. Nano Letters,2010,10(7):2727-2733.[16] Perera S D, Rudolph M, Mariano R G, et al. Manganese oxide nanorod-graphene/vanadium oxide nanowire-graphene binder-free paper electrodes for metal oxide hybrid supercapacitors[J]. Nano Energy, 2013,2(5):966-975.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2025-03-10