|本期目录/Table of Contents|

[1]胡李娜,李辉,赵基钢*,等.水力旋流器电脱盐含油废水分离的数值模拟[J].石化技术与应用,2021,6:392-397.
 HU Li-na,LI Hui,ZHAO Ji-gang,et al.Numerical simulation of separation for electric desalted oily wastewater by hydrocyclone[J].Petrochemical technology & application,2021,6:392-397.
点击复制

水力旋流器电脱盐含油废水分离的数值模拟(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2021年6期
页码:
392-397
栏目:
出版日期:
2021-11-10

文章信息/Info

Title:
Numerical simulation of separation for electric desalted oily wastewater by hydrocyclone
文章编号:
1009-0045(2021)06-0392-06
作者:
胡李娜1李辉2赵基钢1*赵陈1丛梅1
1.华东理工大学 绿色能源化工国际联合研究中心,上海 200237;2.上海雪垠化工有限公司,上海 201512
Author(s):
HU Li-na1 LI Hui2 ZHAO Ji-gang1 ZHAO Chen1 CONG Mei1
(1.International Joint Research Center for Green Energy Chemical Engineering,EastChina University of Science and Technology,Shanghai 200237, China;2.Shanghai Xueyin Chemical Co Ltd, Shanghai 201512, China)
关键词:
含油废水水力旋流器流体动力学模拟分离效率分流比油滴粒径
Keywords:
oily wastewater hydrocyclone hydrodynamic simulation separation efficiency split ratio oil particle size
分类号:
TE 992.2
DOI:
10.19909/j.cnki.ISSN1009-0045.2021.06.0392
文献标识码:
B
摘要:
以密度为840 kg/m3,黏度为0.024 76 Pa·s的电脱盐含油废水(油相)为研究对象,在其体积分数为0.119%,入口流量为0.5~5.0 m3/h,分流比为0.5%~5.0%的条件下,采用数值模拟技术建立了含油废水在水力旋流器内的混合流体多相流模型和雷诺应力湍流模型。结果表明:随入口流量和分流比的增大,水力旋流器的分离效率增强;适当调节操作参数,能够有效提高水力旋流器的分离性能;在入口流量为2.0~3.0 m3/h,分流比为3.0%~4.0%,入口油滴粒径为80~120 μm的适宜条件下,模拟分离效率为85.6%~96.5%,水力旋流器底流口排出液的含油量为35~144 μg/g。
Abstract:
The mixed multiphase fluid flow model and Reynolds stress(RSM) turbulence model of oily wastewater in hydrocyclone were established by adopting numerical simulation technology,in which electric desalted oily wastewater (oil phase) with density of 840 kg/m3 and viscosity of 0.024 76 Pa·s was chosen as the research object.The simulation was conducted under the conditions of oil phase volume fraction of 0.119%, inlet flow of 0.5-5.0 m3/h and split ratio of 0.5%-5.0%.The results showed that the separation efficiency of hydrocyclone had increased with the increase of inlet flow and split ratio; proper adjustment to operating parameters could effectively improve the separation performance of hydrocyclone.Under the suitable operating conditions of the inlet flow of 2.0-3.0 m3/h, split ratio of 3.0%-4.0%, and inlet oil particle size of 80-120 μm,the simulated separation efficiency was 85.6%-96.5% and the oil content of the liquid discharged at the bottom outlet of the hydrocyclone was 35-144 μg/g.

参考文献/References

[1] 贾秀芹,陈长顺,宋风明.炼油污水处理改造工程设计[J].工业用水与废水,2020,51(2):69-72.
[2] 王明友,王卓群,张志华.含油污水处理工艺及关键技术分析[J].科技与创新,2020(5):77-78.
[3] 王福善,苏冠男,张宏生,等.EC 2472 A破乳剂在降低常减压装置电脱盐污水油含量中的工业应用[J].石化技术与应用,2015,33(1):67-69.
[4] 王志强,董力军.原油破乳剂YS-1123的性能评价与工业应用[J].石化技术与应用,2017,35(2):150-152.
[5] 韦清华,刘发强,罗庆,等.超重力吸收处理炼化污水场挥发性有机物[J].石化技术与应用,2021,39(2):129-132.
[6] 赖育挺.膜强化传质技术在原油预处理中的应用[J].石化技术与应用,2018,36(3):213-214.
[7] 张维薇,雷启盟.联合站污水处理提质优化分析[J].辽宁化工,2020,49(9):1111-1113.
[8] 屈丹龙,李毅.油水分离水力旋流器优化设计与仿真[J].安全、健康和环境,2020(6): 27-30.
[9] 冯静安,唐小琦,王卫兵,等.基于网格无关性与时间独立性的数值模拟可靠性的验证方法[J].石河子大学学报,2017,35(1):52-56.
[10] Lee M,Park G,Park C,et al.Improvement of grid independence test for computational fluid dynamics model of building based on grid resolution[J].Advances in Civil Engineering,2020(1):11-23.
[11] Kuang S B,Chu K W,Yu A B,et al.Numerical study of liquid-gas-solid flow in classifying hydrocyclones:Effect of feed solids concentration[J].Minerals Engineering,2012(31): 17-31.
[12] Qi Z,Kuang S B,Yu A B.Numerical investigation of the separation behaviours of fine particles in large dense medium cyclones[J].International Journal of Mineral Processing,2015(142):35-45.
[13] Huang L,Deng S,Chen M,et al.Numerical simulation and experimental study on a deoiling rotary hydrocyclone[J].Chemical Engineering Science,2017(172):107-116.
[14] Senfter T,Fritsch L,Berger M,et al.Sludge thickening in a wastewater treatment plant using a modified hydrocyclone[J].Carbon Resources Conversion,2021(4):132-141.
相关文献链接:
[1] 刘译阳,焦伟,曹强,等.电脱盐废水处理技术现状[J].油气田环境保护,2021,31(1):11-14.
[2] 贾朋,陈家庆,蔡小垒,等.基于CFD-PBM模拟水力旋流器油水分离特性研究[J].石油化工高等学校学报,2021,34(4):58-65.
[3] 彭永刚.井下油水分离用水力旋流器分离性能适用性分析[J].化学工程与装备,2020(9):91-93.
[4] 王建良,祁小兵,郭伟伟,等.基于模糊神经网络的油水分离水力旋流器研究[J].农业装备与车辆工程,2007(7):21-23.
[5] 栾雪薇.浅谈油田注聚采油废水油水分离技术[J].化学工程与装备,2019(1): 288-289.
[6] 刘美丽,张雪,张翌,等.泥水分离用水力旋流器的数值模拟[J].北京石油化工学院学报,2018,26(1):22-29.
[7] 董辉,伍开松,况雨春,等.基于DEM-CFD水力旋流器的水合物浆体分离规律研究[J].浙江大学学报,2018,52(9):1811-1820.
[8] Angelim K,Lima A.Applying CFD in the analysis of heavy oil/water separation process via hydrocyclone[J].International Journal of Multiphysics,2017,11(2): 151-168.
[9] 张辉煌,栾江峰.内循环式水力旋流油水分离器的研究[J].当代化工,2017,46(11):2356-2359.
[10] 喻黎明,邹小艳,谭弘,等.基于CFD-DEM耦合的水力旋流器水沙运动三维数值模拟[J].农业机械学报,2016,47(1):126-132.
[11] 白志山,汪华林.油脱水型水力旋流器压力特性和分离性能[J].华东理工大学学报(自然科学版),2006,32(4):488-491.
[12] 曹书翰,陈立功,刘先杰,等.基于油水分离的餐饮废水破乳化技术研究[J].环境保护科学,2013,39(4):13-22.
[13] 邵悦,赵会军.水力旋流器油水分离数值模拟与实验研究[J].常州大学学报(自然科学版),2013,25(2): 51-55.
[14] Hao M S,Bai Z S,Wang H L.Removal of oil from electric desalting wastewater using centrifugal contactors [J].Journal of Petroleum Science & Engineering,2013(111):37-41.
[15] Amini S,Mowla D,Golkar M.Mathematical modelling of a hydr -ocyclone for the down-hole oil-water separation(DOWS)[J].Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers,2012,90(12): 2186-2195.
[16] 王丹竹,冯永权.关于合成油废水油水分离的技改[J].煤,2011,20(11):64-71.
[17] 张春娟,刘炯天,李小兵,等.含油污泥分离水力旋流器研究进展[J].煤炭技术,2009,28(11):6-8.
[18] 俞接成,陈家庆,王波.液-液分离用水力旋流器内部流场的三维数值模拟[J].石油矿场机械,2007,36(5):9-14.

备注/Memo

备注/Memo:
收稿日期:2021-06-15;修回日期:2021-08-23
基金项目:国家重点研发计划资助项目(项目编号:2017 YFB 0306601)
作者简介:胡李娜(1992—),女,江苏连云港人,硕士研究生。主要从事化工分离的模拟计算研究,已发表论文 4 篇。
*通讯联系人。
更新日期/Last Update: 2021-11-10