|本期目录/Table of Contents|

[1]胡杨曼曼,王志坤,高月.ZnS/CuS/RGO复合材料的制备及其对聚丙烯酰胺的光催化降解性能[J].石化技术与应用,2022,3:173-176.
 HU Yang-manman,WANG Zhi-kun,GAO Yue.Preparation of ZnS/CuS/RGO composites and their photocatalytic degradation performance on polyacrylamide[J].Petrochemical technology & application,2022,3:173-176.
点击复制

ZnS/CuS/RGO复合材料的制备及其对聚丙烯酰胺的光催化降解性能(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2022年3期
页码:
173-176
栏目:
出版日期:
2022-05-10

文章信息/Info

Title:
Preparation of ZnS/CuS/RGO composites and their photocatalytic degradation performance on polyacrylamide
文章编号:
1009-0045(2022)03-0173-04
作者:
胡杨曼曼王志坤高月
延长油田股份有限公司 杏子川采油厂,陕西 延安 717400
Author(s):
HU Yang-manman WANG Zhi-kun GAO Yue
Xingzichuan Oil Production Plant of Yanchang Oilfield Co Ltd,Yan′an 717400,China
关键词:
聚丙烯酰胺光催化石墨烯硫化锌硫化铜
Keywords:
polyacrylamidephotocatalysisgraphenezinc sulfidecopper sulfide
分类号:
O 643.36
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2022.02.0094
文献标识码:
B
摘要:
采用水热合成法制备了Zn/Cu-MOFs(金属有机框架化合物)/GO(氧化石墨烯)复合材料,将其与硫代乙酰胺(TAA)反应制备出ZnS/CuS/RGO(还原氧化石墨烯)异质结复合材料,利用扫描电子显微镜、X射线衍射仪、荧光分光光度计等对ZnS/CuS/RGO复合材料进行了表征,并在太阳光下,考察了其对聚丙烯酰胺(PAM)的光催化降解性能。结果表明:在锌铜比(摩尔比)为1∶9,ZnS/CuS/RGO加入质量浓度为0.5 g/L,H2O2加入浓度为16 mmol/L的条件下,可使初始质量浓度为100 mg/L的PAM溶液的PMA降解率达到99.30%。
Abstract:
The Zn/Cu-MOFs(metal organic framework)/GO(graphene oxides) composites were prepared by hydrothermal synthesis,then the ZnS/ Cus/RGO(reduced graphene oxide) heterojunction composites were prepared by reacting the above prepared composites with thioacetamide. The ZnS/CuS/RGO composites were characterized by scanning electron microscope, X-ray diffraction and fluorescence spectrophotometer, and their photocatalytic degradation performance on polyacrylamide(PAM) was investigated under the simulated sunlight. The results showed that under the conditions of Zn/Cu molar ratio at 1∶9,ZnS/CuS/RGO mass concentration at 0.5 g/L and H2O2 concentration at 16 mmol/L, the degradation rate of the PAM in 100 mg/L PAM solution(initial mass concentration) could reach 99.30%.

参考文献/References

[1] 丁川. 国内外三次采油助剂聚丙烯酰胺生产技术及其发展[J]. 大庆石油地质与开发, 2014,33(4):131-135.[2] 林刚. 聚合物驱采出水特性分析[J]. 石油化工建设, 2013,35(2):79-81.[3] 黄君礼. 丙烯酰胺的毒性及其分析方法[J]. 环境科学丛刊, 1991(4):39-46. [4] 张学佳, 纪巍, 康志军,等. 聚丙烯酰胺降解的研究进展[J]. 油气田环境保护, 2008, 18(2):41-45.[5] 赵大洲, 张钰, 张甜,等. 基于磁性TiO2光催化剂降解有机物的研究进展[J]. 四川轻化工大学学报(自然科学版), 2020, 33(4):13-19.[6] 李金环, 康万利, 闫文华,等. Eu/TiO2光催化降解部分水解聚丙烯酰胺影响因素研究[J]. 分子催化, 2008, 22(3):265-270.[7] Zou H, Wang L, Tao H, et al. Preparation of SiO2@TiO2:Eu3+@TiO2 core double-shell microspheres for photodegradation of polyacrylamide[J]. RSC Advance, 2019, 9(53):30790-30796.[8] Li S, Li Y, Shao L, et al. Direct Z-scheme N-doped TiO2/MoS2 heterojunction photocatalyst for photodegradation of methylene blue under simulated sunlight[J]. Chemistry Select, 2021(2): 181-186.[9] Zhang M, Lai C, Li B, et al. Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: Kinetics, intermediates, and mechanism insight[J]. Journal of Catalysis, 2019(369):469-481.[10] 王文东, 张小妮, 杨钊, 等. 淀粉-碘化镉法测定水中聚丙烯酰胺含量探讨[J]. 净水技术, 2010, 29(5):33-35.[11] Bu Y Y, Chen Z Y, Li W B. Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous Ag-C3N4 heterojunction material[J]. Applied Catalysis B: Environmental, 2014(144): 622-630.[12] 李翠霞,金海泽,谭高伟,等. rGO/TiO2复合光催化剂的制备及光催化性能[J]. 中国环境科学, 2017, 37(2): 570-576. [13] 方嘉声, 于光认, 陈晓春, 等. 石墨烯掺杂分子筛负载氧化铁芬顿催化降解苯酚影响因素的研究[J]. 环境科学学报, 2015,35(11):3529-3537.

备注/Memo

备注/Memo:
延长油田股份有限公司资助项目(项目编号:ycsy 2021 qnjj-B-06)
更新日期/Last Update: 2022-05-10