|本期目录/Table of Contents|

[1]高阳峰,张范,马红卫,等.主链含咪唑环介孔聚酰亚胺气凝胶的制备及其CO2吸附性能[J].石化技术与应用,2022,6:398-405.
 GAO Yang-feng,ZHANG Fan,MA Hong-wei,et al.Preparation of mesoporous polyimide aerogels with imidazole inbackbone and its CO2 adsorption performance[J].Petrochemical technology & application,2022,6:398-405.
点击复制

主链含咪唑环介孔聚酰亚胺气凝胶的制备及其CO2吸附性能(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2022年6期
页码:
398-405
栏目:
出版日期:
2022-11-10

文章信息/Info

Title:
Preparation of mesoporous polyimide aerogels with imidazole inbackbone and its CO2 adsorption performance
文章编号:
1009-0045(2022)06-0398-08
作者:
高阳峰1张范2马红卫1李杨1*
1.大连理工大学 精细化工国家重点实验室,辽宁 大连116024;2.中化弘润潍坊弘润新材料有限公司,山东 潍坊261108
Author(s):
GAO Yang-feng1 ZHANG Fan2MA Hong-wei1LI Yang1
1.State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian 116024,China;2.SinochemHongrun Weifang Hongrun New Material Co Ltd,Weifang 261108,China
关键词:
CO2吸附介孔聚酰亚胺块体材料吸附剂有机聚合物气凝胶缩聚反应
Keywords:
CO2 adsorption mesoporous polyimide bulk material adsorbent organic polymer aerogel polycondensation reaction
分类号:
TQ 051.893; TQ 334.1
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2022.06.0398
文献标识码:
B
摘要:
以2,2′-二甲基-4,4′-二氨基联苯(DMBZ)为二胺单体、1,3,5-三(4-胺基苯氧基)苯(TAB)为交联剂、2-(3-胺基苯基)-5-胺基苯并咪唑(ABIA)为第3共聚单体,通过调控DMBZ/ABIA(摩尔比),在乙酸酐/吡啶的催化作用下,分别与3,3′,4,4′-联苯四酸二酐进行缩聚反应,制备出系列主链含咪唑环的介孔共聚酰亚胺气凝胶材料。并对其结构进行了分析表征,考察了其CO2吸附性能。结果表明:该气凝胶材料不仅耐热性较高,热分解温度均在510 ℃以上,而且当ABIA摩尔分数为100%时,气凝胶试样的5%热分解温度最高,达到了569.33 ℃。此外该气凝胶材料还具有较高的CO2吸附性能,当ABIA摩尔分数为50%时,气凝胶试样对CO2的吸附量最大,高达14.8 cm3/g。
Abstract:
A series of mesoporous copolyimide aerogel with imidazole ring in the backbone and corresponding aerogel bulk materials were prepared under the conditions as followed: by using 2,2′-dimethyl-4,4′ -diaminobiphenyl (DMBZ) as diamine monomer, using 1,3, 5-tri(4-aminophenoxy) benzene (TAB) as cross-linking agent, and using 2-(3-aminophenyl) -5-aminophenyl benzimidazole(ABIA) as the 3rd copolymer, by regulating the molar ratio of DMBZ to ABIA, via the polycondensation reactions with 3,3′,4,4′-biphenyl tetrachlorate dianhydride, along with the catalytic effect of acetic anhydride/pyridine, respectively. Then, their structures were characterized and their CO2 adsorption performance were tested. The results showed that: the aerogel materials not only had the high thermal resistance, with the thermal decomposition temperature at above 510 ℃, but also when the molar fraction of ABIA was at 100%, the 5% thermal decomposition temperature of this aerogel sample was the highest and reached 569.33 ℃. In addition, the aerogel material also had high CO2 adsorption performance, when the molar fraction of ABIA was at 50%, the CO2 adsorption capacity of the aerogel sample was the largest at 14.8 cm3/g.

参考文献/References

[1] Hilal D, Hasan C G, Gokay A, et al. Effect of metal–organic framework (MOF) database selection on the assessment of gas storage and separation potentials of MOFs[J]. Angew Chem Int, Ed, 2021, 60(14): 7828-7837.[2] Kuthuru S, DarpandeepA, Justin P, et al. Optimizing hydrogen storage in MOFs through engineering of crystal morphology and control of crystal size[J]. J Am Chem Soc, 2021, 143(28): 10727-10734.[3] Fan W, Zhang X, Kang Z, et al. Isoreticular chemistry within metal-organic frameworks for gas storage and separation[J]. Coordination Chemistry Reviews, 2021, 440(12): 213968-214024.[4] Sylwia G, Barbara S, Jerzy C, et al. Mechanochemistry: Toward greensynthesis of metal–organic frameworks[J]. Materials Today, 2021, 46(6): 109-124.[5] Li X, Zhang C, Cai S, et al. Facile transformation of imine covalent organicframeworks into ultrastable crystalline porousaromatic frameworks[J]. Nature Communication, 2018, 9(7): 2998-3005.[6] Jiang L, Tian Y, Sun T, et al. A crystalline polyimide porous organic framework for selective adsorption of acetylene over ethylene[J]. J Am Chem Soc, 2018, 140(8): 15724-15730.[7] Shen R, Zhu W, Yan X, et al. A porphyrin porous organic polymer withbicatalytic sites for highly efficient one-pottandem catalysis[J]. Chem Commun, 2019,55(11): 822-825.[8] Hao L,Christian S D, Zhu C, et al. Porous crystalline olefin-linked covalent organic frameworks[J]. J Am Chem Soc, 2019, 141(3): 6848-6852.[9] Wang G, Karen L, Zhao S, et al. Newly designed covalent triazineframework based on novel N-heteroaromaticbuilding blocks for efficient CO2 and H2 captureand storage[J]. ACS Appl Mater Interfaces, 2018, 10(10): 1244-1249.[10] Du J, Cui Y, Liu Y, et al. Preparation of benzodiimidazole-containing covalent triazine frameworks forenhanced selective CO2 capture and separation[J]. Microporous and Mesoporous Materials, 2019, 276(1): 213-222.[11] Johannes M, Tanmay B, G?觟kcen S, et al. Ionothermal synthesis of imide-linked covalent organic frameworks [J]. Angew. Chem. Int. Ed., 2020, 132(36): 15880-15888.[12] Wang K, Yang L, Wang X, et al. Covalent triazine frameworks via a low temperature polycondensation approach[J].Angew Chem Int Ed, 2017, 129(45): 14337-14341.[13] Tian B,Zheng J,Zhao C, et al. Carbonyl-based polyimide andpolyquinoneimidefor potassium-ion batteries[J]. J Mater Chem A, 2019, 7(16): 9997-10003.[14] Reiner S S, Yang B, Anne A Y G, et al. Photocatalytic hydrogen evolution from water using fluorene and dibenzothiophene sulfone conjugated microporous and linear polymers[J]. Chemistry of materials, 2018,31(2): 1-14.[15] Nicolas C,Matthias T, Robert D, et al. Trends and challenges for microporous polymers[J]. Chem Soc Rev,2017,46(11): 3302-3321.[16] Wang L, Wan Y, Ding Y, et al. Conjugated microporouspolymer nanosheets for overall water splitting using visible light[J]. Adv Mater, 2017, 29(38): 1702428-1702436.[17] He W, Wu C. Incorporation of Fe-phthalocyanines into a porous organic framework for highly efficient photocatalytic oxidation of arylalkanes[J]. Applied Catalysis B( Environmental), 2018, 234(6): 290-295.[18] Uriel C,Daily R,Mario J M, et al. Facile synthesis of B/g-C3N4 composite materialsfor the continuous-flow selective photo-production of acetone[J]. Green Chem, 2020, 22(15): 4975-4984.[19] Ma C, Jeffrey J U. Hydrogen-bonded polyimide/metal-organic framework hybrid membranes for ultrafast separations of multiple gas pairs[J]. Adv Funct Mater, 2019, 29(32):1903243-1903251.[20] Zhang Y, Huang Z, Ruan B, et al. Design and synthesis of polyimide covalent organic frameworks[J]. Macromol Rapid Commun,2020, 41(22): 2000402-2000415.[21] Stephanie L, Mary A B M, Coleen P, et al. Toward improved optical transparency of polyimide aerogels[J]. ACS Appl Mater Interfaces,2020,12(7): 8622-8633.[22] Chen X,Liu H,Zheng Y, et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor[J]. ACS Appl Mater Interfaces, 2019, 11(45): 42594-42606.[23] Qian Z, Wang Z, Chen Y, et al. Superelastic and ultralight polyimide aerogels asthermal insulators and particulate air filters[J]. J Mater Chem A, 2018, 6(3): 828-832.[24] Ting W, Jie D, Kevin D F, et al. Porous carbon frameworks with high CO2 capture capacity derived from hierarchical polyimide/zeoliticimidazolate frameworks composite aerogels[J]. Chemical Engineering Journal, 2020, 395(2): 124927-124935.[25] Preston J, Dewinter W F, Hofferbert W L. Heterocyclic intermediates for the preparation of thermally stable polymers: Ⅲ. Unsymmetrical benzoxazole, benzothiazole and benzimidazolediamines[J]. Journal of Heterocyclic Chemistry, 1969, 6(1): 119-121.[26] Wang Z, Wang D, Zhang F, et al. Tr?觟ger′s base microporous polyimide membranes for high-performance gas separation[J]. ACS Macro Lett,2014, 3(7): 597-601.[27] Omar K F,Youn-Sang B, Brad G H, et al. Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane[J].Chem Commun, 2010, 46(7), 1056-1058.[28] Luo Y, Li B, Liang L, et al. Synthesis of cost-effective porous polyimides and their gas storage properties[J].Chem Commun, 2011,47(27): 7704-7706.[29] Mario R L, Jurgen S. Microporous functionalized triazine-based polyimides with high CO2 capture capacity[J].Chem Mater, 2013, 25(6): 970-980.[30] Xia Q, Liu J, Dong J, et al. Synthesis and characterization of high performance polyimides based on 6,4′-diamino-2-phenyl benzimidazole[J]. J Appl Polym Sci, 2013,129(1):145-151.[31] Michele R R H, Daniel F P,Carla D, et al. Influence of crystallinity and chain interactions on the electrical properties of polyamides/carbon nanotubes nanocomposites[J]. J Appl Polym Sci, 2021, 138(33):50817-50824.[32] Christoph K, Marion B, Thomas H, et al. Microporous organic polyimides for CO2 and H2O capture and separation from CH4 and N2 mixtures-interplay between porosity and chemical function[J]. Chem Mater,2016,28(15): 5461-5470.[33] Li G, Wang Z. Microporous polyimides with uniform pores for adsorption and separation of CO2 gas and organic vapors[J]. Macromolecules, 2013, 46(8): 3058-3066.[34] Shi K, Yao H, Zou Y, et al. Cross linked porphyrin-based polyimides: Tunable porosity parameters and carbon dioxide adsorption[J].Microporous and Mesoporous Materials, 2019, 287(10): 246-253.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2022-11-10