|本期目录/Table of Contents|

[1]闫冰,陈智,张永辉,等.水蒸气对CO2氧化丁烯脱氢制丁二烯工艺的影响[J].石化技术与应用,2023,1:1-6.
 YAN Bing,CHEN Zhi,ZHANG Yong-hui,et al.Effect of steam on process for oxidative dehydrogenation of 1-butene to1,3-butadiene with CO2[J].Petrochemical technology & application,2023,1:1-6.
点击复制

水蒸气对CO2氧化丁烯脱氢制丁二烯工艺的影响(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年1期
页码:
1-6
栏目:
出版日期:
2023-01-10

文章信息/Info

Title:
Effect of steam on process for oxidative dehydrogenation of 1-butene to1,3-butadiene with CO2
文章编号:
1009-0045(2023)01-0001-06
作者:
闫冰1陈智2张永辉1牟祥升1姜涛1
1.天津科技大学 化工与材料学院,天津 300457;2.中国石油兰州石化公司 榆林化工有限公司,陕西 榆林 719200
Author(s):
YAN Bing1CHEN Zhi2ZHANG Yong-hui1MU Xiang-sheng1JIANG Tao1
1.College of Chemical Engineering and Materials Science,Tianjin University of Science & Technology, Tianjin 300457,China; 2.Yulin Chemical Co Ltd, Lanzhou Petrochemical Company, PetroChina, Yulin 719200, China
关键词:
二氧化碳1-丁烯氧化脱氢13-丁二烯热力学分析
Keywords:
carbon dioxide1-buteneoxidative dehydrogenation13-butadienethermomechanical analysis
分类号:
TQ 426.6; O 643.3
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.01.0001
文献标识码:
B
摘要:
对CO2氧化丁烯脱氢制备丁二烯的反应体系中引入水蒸气的工艺进行了热力学计算,分析了水蒸气对催化剂选择性及稳定性的影响,并以FeVCrOx/γ-Al2O3为催化剂,考察了反应温度、反应质量空速对催化剂性能的影响。结果表明:向反应体系中引入水蒸气后,丁烯转化率和丁二烯收率会有所下降,但是,引入适量水蒸气可以提高催化剂的选择性;在水蒸气流量为0.028 8 mL/min,反应温度为600 ℃,反应质量空速为9 h-1的最优反应条件下,催化剂的选择性及稳定性均有所提高。
Abstract:
The process of introducing steam into the reaction of oxidative dehydrogenation of 1-butene to 1,3-butadiene with CO2 was studied by thermodynamic calculation and the effect of steam on catalyst selectivity and stability was analyzed. With FeVCrOx/γ-Al2O3 as catalyst, the effect of reaction temperature and reaction space velocity on the catalyst′s performance was investigated. The results showed that the equilibrium conversion of 1-butene and the yield of 1,3-butadiene had decreased when steam was introduced into the reaction system, but an appropriate amount of steam could improve the selectivity of the catalyst. The selectivity as well as the stability of the catalyst were both improved under the optimum reaction conditions of water flow rate 0.028 8 mL/min , reaction temperature 600 ℃ and reaction mass space velocity 9 h-1.

参考文献/References

[1] 王璐怡, 陈全鑫, 闫冰,等. 1-丁烯氧化脱氢制1,3-丁二烯催化剂研究进展[J]. 石化技术与应用, 2020, 38(4): 284-290.[2] 陈全鑫, 窦洪鑫, 闫冰,等. CO2氧化1-丁烯脱氢制1,3-丁二烯活性炭负载铁基催化剂的研究[J]. 天然气化工(C1:化学与化工), 2021, 46(1): 38-45.[3] 年琳玉, 王梦军, 孙笑阳,等. 碳中和技术研究进展及对农业碳减排的展望[J]. 江苏农业科学, 2022, 50(11): 1-13.[4] 王凯, 贺明丽, 王梦,等. 以CO2为原料的绿色生物制造[J]. 化工进展, 2019, 38(1): 538-544.[5] 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285.[6] 杨英, 肖立帧. 丁烯氧化脱氢制丁二烯技术进展及经济性分析[J]. 石油化工技术与经济, 2016, 32(4): 14-18.[7] 钱伯章, 李秀红. 丁二烯的技术进展与市场分析[J]. 化学工业, 2015, 33(11): 33-41.[8] Yan W J, Kouk Q Y, Luo J Z, et al. Catalytic oxidative dehydrogenation of 1-butene to 1,3-butadiene using CO2[J]. Catalysis Communication, 2014, 46: 208-212.[9] Kouk J E, Zheng Z, Zhong Y K, et al. Improving oxidative dehydrogenation of 1-butene to 1,3-butadiene on Al2O3 by Fe2O3 using CO2 as soft oxidant[J]. Appllied Catalysis A: General, 2015, 508: 61-67.[10] Yan W J, Kouk Q Y, Tan S X, et al. Effcct of Pt-PtOx particle size on 1-butene oxidative dehydrogenation to 1, 3-butadiene using CO2 as soft oxidant[J]. Journal of CO2 Utilization, 2016, 15: 154-159.[11] Gao Y, Wang B L, Yan B, et al. Catalytic oxidative dehydrogenation of 1-butene to 1,3-butadiene with CO2 over Fe2O3/γ-Al2O3 catalysts: The effect of acid or alkali modification[J]. Reaction Kinetics Mechanisms and Catalysis, 2017, 122(1): 451-462.[12] Yan B, Gao Y, Wang B L, et al. Enhanced carbon dioxide oxidative dehydrogenation of 1-butene by iron-doped ordered mesoporous alumina[J]. Chem Cat Chem, 2017, 9(24): 4480-4483.[13] 于莉莉. 丁烯氧化脱氢制丁二烯催化剂的研究[D]. 青岛: 中国石油大学(华东), 2013.[14] Jung J C, Kim H, Kim Y S, et al. Catalytic performance of bismuth molybdate catalysts in the oxidative dehydrogenation of C4 raffinate-3 to 1,3-butadiene[J]. Appllied Catalysis A: General, 2007, 317(2): 244-249.[15] Jung J C, Lee H, Park D R, et al. Effect of calcination temperature on the catalytic performance of gamma-Bi2MoO6 in the oxidative dehydrogenation of n-butene to 1,3-butadiene[J]. Catalysis Letters, 2009(131): 401-405.[16] Jung J C, Lee H, Kim H, et al. Effect of oxygen capacity and oxygen mobility of pure bismuth molybdate and multicomponent bismuth molybdate on their catalytic performance in the oxidative dehydrogenation of n-butene to 1,3-butadiene[J]. Catalysis Letters, 2008(124): 262-267.[17] Jung J C, Lee H, Kim H, et al. Effect of calcination temperature on the catalytic performance of Co9Fe3Bi1Mo12O51 in the oxidative dehydrogenation of n-butene to 1,3-butadiene[J]. Catalysis Communications, 2008(9): 2059-2062.[18] Lee H, Jung J C, Song I K. Oxidative dehydrogenation of n-butene to 1,3-butadiene over sulfated ZnFe2O4 catalyst[J]. Catalysis Letters, 2009(133): 321-327.[19] Bi Y L, Zhen K J, Valenzuela R X, et al. Oxidative dehydrogenation of isobutane over LaBaSm oxide catalyst-Influence of the addition of CO2 in the feed[J]. Catalysis Today, 2000(61): 369-375.[20] Raju G, Reddy B M, Abhishek B, et al. Synthesis of C4 olefins from n-butane over a novel VOx/SnO2-ZrO2 catalyst using CO2 as soft oxidant[J]. Appllied Catalysis A: General, 2012(423): 168-175.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(项目编号:21606172)
更新日期/Last Update: 2023-01-10