|本期目录/Table of Contents|

[1]李自夏,冉印*,丁博,等.环氧类玻璃高分子材料的热回收性能研究[J].石化技术与应用,2023,1:7-12.
 LI Zi-xia,Ran Yin,DING Bo,et al.Heat recovery performance of epoxy vitrimer[J].Petrochemical technology & application,2023,1:7-12.
点击复制

环氧类玻璃高分子材料的热回收性能研究(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年1期
页码:
7-12
栏目:
出版日期:
2023-01-10

文章信息/Info

Title:
Heat recovery performance of epoxy vitrimer
文章编号:
1009-0045(2023)01-0007-06
作者:
李自夏1冉印23* 丁博3 李飞3
1.重庆工商大学 废油资源化技术与装备教育部工程研究中心,重庆 400067;2.西南大学 化学化工学院,重庆 400715;3.重庆国际复合材料有限公司 创新中心,重庆 400082
Author(s):
LI Zi-xia 1Ran Yin23 DING Bo3 LI Fei3
1. Engineering Research Center for Waste Oil Recovery Technology and Equipment,Chongqing Technology and Business University, Chongqing 400067,China; 2. School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715,China; 3.Chongqing Polycomposites International Corporation, Chongqing 400082,China
关键词:
环氧类玻璃高分子动态交联热回收性能模压温度时间压力
Keywords:
epoxy vitrimer dynamic crosslinkingheat recovery performance molding temperature time pressure
分类号:
TQ 327.1
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.01.0007
文献标识码:
B
摘要:
采用动态交联技术制备了环氧类玻璃高分子材料(EPV),将其制得的片材在不同模压条件下进行重复加工,考察了模压温度、模压时间和模压压力对EPV回收材料性能的影响。结果表明:重复加工没有造成EPV回收材料的降解;模压温度越高,模压时间越长,模压压力越大,越有利于EPV的愈合和重塑;在模压温度为180 ℃,模压压力为20 MPa,模压时间为10 min的较佳条件下,重复加工的EPV回收材料力学性能与初始EPV片材的接近。
Abstract:
The sheet prepared by epoxy vitrimers (EPV),which was produced by dynamic crosslinking technology, was reprocessed under different molding conditions. The effects of molding temperature, molding time and molding pressure on the properties of recycled EPV were investigated. The results showed that remolding process did not cause degradation of EPV. The higher the molding temperature, the longer the molding time, and the greater the molding pressure, the more conducive to the healing and remodeling of EPV. Under the optimal conditions of molding temperature 180 ℃, molding pressure 20 MPa and molding time 10 min, the mechanical properties of the recycled EPV material were close to original EPV sheet.

参考文献/References

[1] Abraham E, Kam D, Nevo Y, et al. Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 28086-28095.[2] Gómez-Del Río T, Salazar A, Pearson R A, et al. Fracture behaviour of epoxy nanocomposites modified with triblock copolymers and carbon nanotubes[J]. Composites Part B: Engineering, 2016(87): 343-349.[3] Legrand A, Soulié-Ziakovic C. Silica–epoxy vitrimer nanocomposites[J]. Macromolecules, 2016, 49(16): 5893-5902.[4] Demongeot A, Groote R, Goossens H, et al. Cross-linking of poly(butylene terephthalate) by reactive extrusion using Zn(Ⅱ) epoxy-vitrimer chemistry[J]. Macromolecules, 2017, 50(16): 6117-6127.[5] Damien M M C, Francois T, Ludwik L. Silica-like malleable materials from permanent organic networks[J]. Science, 2011( 334): 965-967.[6] Ran Y, Zheng L J, Zeng J B. Dynamic crosslinking: An efficient approach to fabricate epoxy vitrimer[J]. Materials, 2021, 14(4): 919.[7] Li H, Zhang B, Yu K, et al. Influence of treating parameters on thermomechanical properties of recycled epoxy-acid vitrimers[J]. Soft Matter, 2020, 16(6): 1668-1677.[8] Chen J J, Huang H, Fan J C, et al. Vitrimer chemistry assisted fabrication of aligned, healable, and recyclable graphene/epoxy composites[J]. Frontiers in Chemistry, 2019 (7):632-645.

备注/Memo

备注/Memo:
重庆市自然科学基金项目博士后基金(项目编号:cstc 2019 jcyj-bsh 0107);重庆市教育委员会科学技术研究项目(项目编号:KJQN 201800840);重庆工商大学高层次人才科研启动项目(项目编号:1856017);重庆工商大学重点平台开发项目(项目编号:KFJJ 2018061)
更新日期/Last Update: 2023-01-10