|本期目录/Table of Contents|

[1]芦琼,刘飞,翟莉慧,等.燃料油吸附脱硫反应机理及吸附剂研究进展[J].石化技术与应用,2023,3:243-248.
 LU Qiong,LIU Fei,ZHAI Li-hui,et al.Research progress of adsorptive desulfurization reaction mechanism and adsorbents of fuel oil[J].Petrochemical technology & application,2023,3:243-248.
点击复制

燃料油吸附脱硫反应机理及吸附剂研究进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年3期
页码:
243-248
栏目:
出版日期:
2023-05-10

文章信息/Info

Title:
Research progress of adsorptive desulfurization reaction mechanism and adsorbents of fuel oil
文章编号:
1009-0045(2023)03-0243-06
作者:
芦琼刘飞翟莉慧王玫马应海
(中国石油石油化工研究院 兰州化工研究中心,甘肃 兰州 730060)
Author(s):
LU Qiong LIU Fei ZHAI Li-hui WANG Mei MA Ying-hai
(Lanzhou Petrochemical Research Center,Petrochemical Research Institute,PetroChina,Lanzhou 730060,China)
关键词:
燃料油脱硫吸附脱硫吸附机理吸附剂沸石介孔材料金属有机骨架化合物
Keywords:
fuel oildesulfurizationadsorptive desulfurizationadsorption mechanismadsorbentzeolitemesoporous materialmetal organic frameworks
分类号:
TE 624.5+1
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.03.0243
文献标识码:
A
摘要:
阐述了吸附脱硫过程的反应机理,对多种吸附剂包括金属氧化物、沸石分子筛、介孔材料、金属有机骨架化合物、碳基材料等的研究进展进行了综述,并对比了各种吸附剂性能的优缺点。指出今后研究方向是采用低成本路线合成比表面积大,吸附容量高的吸附剂,且其对燃料油中的硫化合物选择吸附性要高,再生后吸附能力下降最小。
Abstract:
The reaction mechanism of the adsorptive desulfurization process was expounded, and the latest research progress of adsorbents was summarized which included metal oxides, zeolite, mesoporous materials, metal organic frameworks, carbon-based materials and so on. Besides, the advantages and disadvantages of various adsorbents were compared. It was pointed out that the future research direction was to use a low-cost route to synthesize the adsorbent with large specific surface area, high adsorption capacity, high selective adsorption of sulphur compounds in fuel oil, and the minimum decrease of the adsorption capacity after regeneration.

参考文献/References

[1] Srivastava V C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels[J]. Rsc Advances, 2012, 2(3): 759-783.[2] Ali M F, Al-Malki A, El-Ali B, et al. Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques[J]. Fuel, 2006,85(10/11): 1354-1363.[3] Liu W , Li T , Yu G , et al. One-pot oxidative desulfurization of fuels using dual-acidic deep eutectic solvents[J]. Fuel, 2020(265):116967.[4] Sano Y, Sugahara, Choi K, et al. Two-step adsorption process for deep desulfurization of diesel oil[J]. Fuel, 2005, 84(7/8): 903-910.[5] Pan F, Lu Z, Tucker I, et al. Surface active complexes formed between keratin polypeptides and ionic surfactants[J]. J Colloid Interface, 2016(484): 125-134.[6] Lee K X, Valla J A. Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: A comprehensive review[J]. Reaction Chemistry & Engineering, 2019, DOI:10.1039/C 9 RE 00036 D.[7] Mishra P, Edubilli S, Mandal B, et al. Adsorption characteristics of metal-organic frameworks containing coordinatively unsaturated metal sites: Effect of metal cations and adsorbate properties[J]. The Journal of Physical Chemistry C, 2014, 118(13): 6847-6855.[8] Li Y, Wang L J, Fan H L, et al. Removal of sulfur compounds by a copper-based metal organic framework under ambient conditions[J]. Energy & Fuels, 2015, 29(1): 298-304.[9] Shi R H, Zhang Z R, Fan H L, et al. Cu-based metal–organic framework/activated carbon composites for sulfur compounds removal[J]. Applied Surface Science, 2017(394): 394-402.[10] Liao J, Wang Y, Chang L, et al. Preparation of M/γ-Al2O3 sorbents and their desulfurization performance in hydrocarbons[J]. RSC Advances, 2015, 5(77): 62763-62771.[11] Qin B, Shen Y, Xu B, et al. Mesoporous TiO2–SiO2 adsorbent for ultra-deep desulfurization of organic-S at room temperature and atmospheric pressure[J]. RSC Advances, 2018, 8(14): 7579-7587.[12] 唐赛, 夏广, 刘澳, 等. 复合金属氧化物脱硫剂的制备及吸附脱硫性能研究[J]. 炼油技术与工程, 2021, 51(9): 44-48.[13] Liu Y, Wang H, Zhao J, et al. Ultra-deep desulfurization by reactive adsorption desulfurization on copper-based catalysts[J]. Journal of Energy Chemistry, 2019(29): 8-16.[14] Dehghan R, Anbia M. Zeolites for adsorptive desulfurization from fuels: A review[J]. Fuel Processing Technology, 2017(167): 99-116.[15] Zu Y, Guo Z, Zheng J, et al. Investigation of Cu (I)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites[J]. Chemical Engineering Journal, 2020(380): 122319.[16] Han X, Li H, Huang H, et al. Effect of olefin and aromatics on thiophene adsorption desulfurization over modified NiY zeolites by metal Pd[J]. RSC Advances, 2016, 6(78): 75006-75013.[17] Lee K X, Wang H, Karakalos S, et al. Adsorptive desulfurization of 4, 6-dimethyldibenzothiophene on bimetallic mesoporous Y zeolites: Effects of Cu and Ce composition and configuration[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18301-18312.[18] Jiang B, Zhu T, Jiang N, et al. Ultra-deep adsorptive removal over hierarchically structured AgCeY zeolite from model gasoline with high competitor content[J]. Journal of Cleaner Production, 2021(297): 126582.[19] Alvarado-Perea L, Colín-Luna J A, López-Gaona A, et al. Simultaneous adsorption of quinoline and dibenzothiophene over Ni-based mesoporous materials at different Si/Al ratio[J]. Catalysis Today, 2020(353): 26-38.[20] Guo Y H, Pan G X, Xu M H, et al. Synthesis and adsorption desulfurization performance of modified mesoporous silica materials M-MCM-41 (M= Fe, Co, Zn)[J]. Clays and Clay Minerals, 2019, 67(4): 325-333.[21] Subhan F, Aslam S, YAN Z, et al. Highly dispersive lanthanum oxide fabricated in confined space of SBA-15 for adsorptive desulfurization[J]. Chemical Engineering Journal, 2020(384): 123271.[22] Yin Y, Wen Z H, Liu X Q, et al. Functionalization of SBA-15 with CeO2 nanoparticles for adsorptive desulfurization: Matters of template P123[J]. Adsorption Science & Technology, 2018, 36(3/4): 953-966.[23] Chang X Q, Wang W S, Liu B S, et al. One-step strategic synthesis of x% Ni–AlSBA-15 sorbents and properties of high adsorption desulfurization for model and commercial liquid fuels[J]. Microporous and Mesoporous Materials, 2018(268): 276-284.[24] Duan J, Pan Y, Liu G, et al. Metal-organic framework adsorbents and membranes for separation applications[J]. Current Opinion in Chemical Engineering, 2018(20): 122-131.[25] Kampouraki Z C, Giannakoudakis D A, Nair V, et al. Metal organic frameworks as desulfurization adsorbents of DBT and 4,6-DMDBT from fuels[J]. Molecules, 2019, 24(24): 4525.[26] Jafarinasab M, Akbari A, Omidkhah M, et al. An efficient Co-based metal–organic framework nanocrystal (Co-ZIF-67) for adsorptive desulfurization of dibenzothiophene: Impact of the preparation approach on structure tuning[J]. Energy & Fuels, 2020, 34(10): 12779-12791.[27] Mosavi S H, Zare-Dorabei R, Bereyhi M. Microwave-assisted synthesis of metal–organic framework MIL-47 for effective adsorptive removal of dibenzothiophene from model fuel[J]. Journal of the Iranian Chemical Society, 2021, 18(3): 709-717.[28] Md A, Rs A , Eg B , et al. N-CNT/ZIF-8 nano-adsorbent for adsorptive desulfurization of the liquid streams: Experimental and modeling[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104806.[29] Guan X, Wang Y, Cai W. A composite metal-organic framework material with high selective adsorption for dibenzothiophene[J]. Chinese Chemical Letters, 2019, 30(6): 1310-1314.[30] Tan P, Xie X Y, Liu X Q, et al. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation[J]. Journal of Hazardous Materials, 2017(321): 344-352.[31] Yaseen M, Ullah S, Ahmad W, et al. Fabrication of Zn and Mn loaded activated carbon derived from corn cobs for the adsorptive desulfurization of model and real fuel oils[J]. Fuel, 2021(284): 119102.[32] Huo Q, Li J, Liu G, et al. Adsorption desulfurization performances of Zn/Co porous carbons derived from bimetal-organic frameworks[J]. Chemical Engineering Journal, 2019(362): 287-297.[33] Zhao S, Ge C, Yan Z, et al. One-pot microwave-assisted combustion synthesis of NiFe2O4-reduced graphene oxide composite for adsorptive desulfurization of diesel fuel[J]. Materials Chemistry and Physics, 2019(229):294-302.[34] Duan Z, Zhang M, Bian H, et al. Copper (Ⅱ)-β-cyclodextrin and CuO functionalized graphene oxide composite for fast removal of thiophenic sulfides with high efficiency[J]. Carbohydrate Polymers, 2020(228): 115385.[35] Dai Y, Zhang N, Xing C, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review[J]. Chemosphere, 2019(223): 12-27.[36] Li J, Zhang H, Tang X, et al. Adsorptive desulfurization of dibenzothiophene over lignin-derived biochar by one-step modification with potassium hydrogen phthalate[J]. RSC Advances, 2016, 6(102): 100352-100360.[37] Ishaq M, Sultan S, Ahmad I, et al. Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent[J]. Journal of Saudi Chemical Society, 2017, 21(2): 143-151.[38] Zhan H, Guo D, Xie G X. Two-dimensional layered materials: From mechanical and coupling properties towards applications in electronics[J]. Nanoscale, 2019, 11(28): 13181-13212.[39] Luo J, Chao Y, Tang Z, et al. Design of lewis acid centers in bundlelike boron nitride for boosting adsorptive desulfurization performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13303-13312.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2023-05-10