[1] Srivastava V C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels[J]. Rsc Advances, 2012, 2(3): 759-783.[2] Ali M F, Al-Malki A, El-Ali B, et al. Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques[J]. Fuel, 2006,85(10/11): 1354-1363.[3] Liu W , Li T , Yu G , et al. One-pot oxidative desulfurization of fuels using dual-acidic deep eutectic solvents[J]. Fuel, 2020(265):116967.[4] Sano Y, Sugahara, Choi K, et al. Two-step adsorption process for deep desulfurization of diesel oil[J]. Fuel, 2005, 84(7/8): 903-910.[5] Pan F, Lu Z, Tucker I, et al. Surface active complexes formed between keratin polypeptides and ionic surfactants[J]. J Colloid Interface, 2016(484): 125-134.[6] Lee K X, Valla J A. Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: A comprehensive review[J]. Reaction Chemistry & Engineering, 2019, DOI:10.1039/C 9 RE 00036 D.[7] Mishra P, Edubilli S, Mandal B, et al. Adsorption characteristics of metal-organic frameworks containing coordinatively unsaturated metal sites: Effect of metal cations and adsorbate properties[J]. The Journal of Physical Chemistry C, 2014, 118(13): 6847-6855.[8] Li Y, Wang L J, Fan H L, et al. Removal of sulfur compounds by a copper-based metal organic framework under ambient conditions[J]. Energy & Fuels, 2015, 29(1): 298-304.[9] Shi R H, Zhang Z R, Fan H L, et al. Cu-based metal–organic framework/activated carbon composites for sulfur compounds removal[J]. Applied Surface Science, 2017(394): 394-402.[10] Liao J, Wang Y, Chang L, et al. Preparation of M/γ-Al2O3 sorbents and their desulfurization performance in hydrocarbons[J]. RSC Advances, 2015, 5(77): 62763-62771.[11] Qin B, Shen Y, Xu B, et al. Mesoporous TiO2–SiO2 adsorbent for ultra-deep desulfurization of organic-S at room temperature and atmospheric pressure[J]. RSC Advances, 2018, 8(14): 7579-7587.[12] 唐赛, 夏广, 刘澳, 等. 复合金属氧化物脱硫剂的制备及吸附脱硫性能研究[J]. 炼油技术与工程, 2021, 51(9): 44-48.[13] Liu Y, Wang H, Zhao J, et al. Ultra-deep desulfurization by reactive adsorption desulfurization on copper-based catalysts[J]. Journal of Energy Chemistry, 2019(29): 8-16.[14] Dehghan R, Anbia M. Zeolites for adsorptive desulfurization from fuels: A review[J]. Fuel Processing Technology, 2017(167): 99-116.[15] Zu Y, Guo Z, Zheng J, et al. Investigation of Cu (I)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites[J]. Chemical Engineering Journal, 2020(380): 122319.[16] Han X, Li H, Huang H, et al. Effect of olefin and aromatics on thiophene adsorption desulfurization over modified NiY zeolites by metal Pd[J]. RSC Advances, 2016, 6(78): 75006-75013.[17] Lee K X, Wang H, Karakalos S, et al. Adsorptive desulfurization of 4, 6-dimethyldibenzothiophene on bimetallic mesoporous Y zeolites: Effects of Cu and Ce composition and configuration[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18301-18312.[18] Jiang B, Zhu T, Jiang N, et al. Ultra-deep adsorptive removal over hierarchically structured AgCeY zeolite from model gasoline with high competitor content[J]. Journal of Cleaner Production, 2021(297): 126582.[19] Alvarado-Perea L, Colín-Luna J A, López-Gaona A, et al. Simultaneous adsorption of quinoline and dibenzothiophene over Ni-based mesoporous materials at different Si/Al ratio[J]. Catalysis Today, 2020(353): 26-38.[20] Guo Y H, Pan G X, Xu M H, et al. Synthesis and adsorption desulfurization performance of modified mesoporous silica materials M-MCM-41 (M= Fe, Co, Zn)[J]. Clays and Clay Minerals, 2019, 67(4): 325-333.[21] Subhan F, Aslam S, YAN Z, et al. Highly dispersive lanthanum oxide fabricated in confined space of SBA-15 for adsorptive desulfurization[J]. Chemical Engineering Journal, 2020(384): 123271.[22] Yin Y, Wen Z H, Liu X Q, et al. Functionalization of SBA-15 with CeO2 nanoparticles for adsorptive desulfurization: Matters of template P123[J]. Adsorption Science & Technology, 2018, 36(3/4): 953-966.[23] Chang X Q, Wang W S, Liu B S, et al. One-step strategic synthesis of x% Ni–AlSBA-15 sorbents and properties of high adsorption desulfurization for model and commercial liquid fuels[J]. Microporous and Mesoporous Materials, 2018(268): 276-284.[24] Duan J, Pan Y, Liu G, et al. Metal-organic framework adsorbents and membranes for separation applications[J]. Current Opinion in Chemical Engineering, 2018(20): 122-131.[25] Kampouraki Z C, Giannakoudakis D A, Nair V, et al. Metal organic frameworks as desulfurization adsorbents of DBT and 4,6-DMDBT from fuels[J]. Molecules, 2019, 24(24): 4525.[26] Jafarinasab M, Akbari A, Omidkhah M, et al. An efficient Co-based metal–organic framework nanocrystal (Co-ZIF-67) for adsorptive desulfurization of dibenzothiophene: Impact of the preparation approach on structure tuning[J]. Energy & Fuels, 2020, 34(10): 12779-12791.[27] Mosavi S H, Zare-Dorabei R, Bereyhi M. Microwave-assisted synthesis of metal–organic framework MIL-47 for effective adsorptive removal of dibenzothiophene from model fuel[J]. Journal of the Iranian Chemical Society, 2021, 18(3): 709-717.[28] Md A, Rs A , Eg B , et al. N-CNT/ZIF-8 nano-adsorbent for adsorptive desulfurization of the liquid streams: Experimental and modeling[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104806.[29] Guan X, Wang Y, Cai W. A composite metal-organic framework material with high selective adsorption for dibenzothiophene[J]. Chinese Chemical Letters, 2019, 30(6): 1310-1314.[30] Tan P, Xie X Y, Liu X Q, et al. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation[J]. Journal of Hazardous Materials, 2017(321): 344-352.[31] Yaseen M, Ullah S, Ahmad W, et al. Fabrication of Zn and Mn loaded activated carbon derived from corn cobs for the adsorptive desulfurization of model and real fuel oils[J]. Fuel, 2021(284): 119102.[32] Huo Q, Li J, Liu G, et al. Adsorption desulfurization performances of Zn/Co porous carbons derived from bimetal-organic frameworks[J]. Chemical Engineering Journal, 2019(362): 287-297.[33] Zhao S, Ge C, Yan Z, et al. One-pot microwave-assisted combustion synthesis of NiFe2O4-reduced graphene oxide composite for adsorptive desulfurization of diesel fuel[J]. Materials Chemistry and Physics, 2019(229):294-302.[34] Duan Z, Zhang M, Bian H, et al. Copper (Ⅱ)-β-cyclodextrin and CuO functionalized graphene oxide composite for fast removal of thiophenic sulfides with high efficiency[J]. Carbohydrate Polymers, 2020(228): 115385.[35] Dai Y, Zhang N, Xing C, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review[J]. Chemosphere, 2019(223): 12-27.[36] Li J, Zhang H, Tang X, et al. Adsorptive desulfurization of dibenzothiophene over lignin-derived biochar by one-step modification with potassium hydrogen phthalate[J]. RSC Advances, 2016, 6(102): 100352-100360.[37] Ishaq M, Sultan S, Ahmad I, et al. Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent[J]. Journal of Saudi Chemical Society, 2017, 21(2): 143-151.[38] Zhan H, Guo D, Xie G X. Two-dimensional layered materials: From mechanical and coupling properties towards applications in electronics[J]. Nanoscale, 2019, 11(28): 13181-13212.[39] Luo J, Chao Y, Tang Z, et al. Design of lewis acid centers in bundlelike boron nitride for boosting adsorptive desulfurization performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13303-13312.