|本期目录/Table of Contents|

[1]李开宇,钟伟,李建刚,等.天然气脱轻烃装置制冷剂循环系统的多参数优化[J].石化技术与应用,2023,6:448-455.
 LI Kai-yu,ZHONG Wei,LI Jian-gang,et al.Multi-parameter optimization of mixed refrigerant circulation system in natural gas light hydrocarbon removal system[J].Petrochemical technology & application,2023,6:448-455.
点击复制

天然气脱轻烃装置制冷剂循环系统的多参数优化(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年6期
页码:
448-455
栏目:
出版日期:
2023-11-10

文章信息/Info

Title:
Multi-parameter optimization of mixed refrigerant circulation system in natural gas light hydrocarbon removal system
文章编号:
1009-0045(2023)06-0448-08
作者:
李开宇1钟伟2李建刚2严志强2陈颖2曹改瑜2刘桂莲1
1. 西安交通大学 化学工程与技术学院, 陕西 西安 710049;2. 中国石油 长庆油田(榆林)油气有限公司,陕西 榆林 719000
Author(s):
LI Kai-yu1ZHONG Wei2LI Jian-gang2YAN Zhi-qiang2CHEN Ying2CAO Gai-yu2LIU Gui-lian1
1.School of Chemical Engineering and Technology,Xi′an Jiaotong University,Xi′an 710049,China;2. Oil and Gas Co Ltd,Changqing Oilfield (Yulin),PetroChina,Yulin 719000,China
关键词:
混合制冷剂制冷循环供冷系统天然气脱轻烃装置主冷箱最大传热温差多参数优化节能降耗
Keywords:
mixed refrigerant refrigeration circulation cooling systemnatural gas light hydrocarbon removal unitmain cold boxmaximum heat transfer temperature differencemulti-parameter optimizationenergy saving and consumption reduction
分类号:
TQ 021.8
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.06.0448
文献标识码:
B
摘要:
为降低制冷装置区能耗及确保主冷箱最大传热温差低于25.00 ℃的综合控制目标,使用化工稳态流程模拟软件Aspen Hysys V 10版,对中国石油长庆油田(榆林)油气有限公司1.09万t/a天然气脱轻烃装置混合制冷剂制冷循环供冷(MRC)系统进行了建模,并构建了主冷箱冷热复合曲线,进行了多参数灵敏度分析优化。结果表明:确定的该MRC系统关键控制参数相关的制冷剂分离器温度、主冷箱高压制冷剂流量最优值分别为1.75 ℃,64 960.00 m3/h,制冷剂压缩机入口、出口压力的最优值分别为270.00,2 940 kPa;在该最优工况下运行的主冷箱内最大传热温差为23.47 ℃,较优化前降低了2.37 ℃,制冷装置区能耗为5 799.17 kW,较优化前降低了2 256.82 kW,降幅为28.01%。
Abstract:
In order to reduce the energy consumption in the refrigeration device area and ensure that the maximum heat transfer temperature difference of the main cold box was lower than 25.00 ℃,the chemical steady-state process simulation software Aspen Hysys V10 was used to model the mixed refrigerant circulation cooling (MRC) system of the 10. 9 kt/a natural gas light hydrocarbon removal unit of Oil and Gas Co Ltd of Changqing Oilfield (Yulin), PetroChina, and the cold-heat compound curve of the main cold box was constructed after simulation. Then the multi-parameter sensitivity analysis and optimization were carried out. The results showed that the optimal values of the temperature of the refrigerant separator and the high-pressure refrigerant flow rate of the main cold box related to the key control parameters of the MRC system were 1.75 ℃ and 64 960.00 m3/h respectively,and the optimal inlet and outlet pressure of the refrigerant compressor were 270.00,2 940.00 kPa,respectively. Comparing with that before optimization,under the optimal operation conditions, the maximum heat transfer temperature difference in the main cold box was 23.47 ℃ by the decrement of 2.37 ℃,and the energy consumption in the refrigeration device area was 5 799.17 kW by the reduction of 28.01%.

参考文献/References

[1] 华贲,熊永强,李亚军,等. 液化天然气轻烃分离流程模拟与优化[J]. 天然气工业,2006,26(5): 127-129.[2] 杨婉玉,李越,李亚军. 天然气轻烃回收工艺设计及操作参数的优化[J]. 化工进展,2015,34(10): 3589-3594.[3] 王遇冬,王璐. 我国天然气凝液回收工艺的近况与探讨[J]. 石油与天然气化工,2005,34(1): 11-13.[4] Mehrpooya M,Gharagheizi F,Vatani A. Thermoeconomic analysis of a large industrial propane refrigerant cycle used in NGL recovery plant[J]. International Journal of Energy Research,2009,33(11): 960-977.[5] Yoon S,Binns M,Park S,et al. Development of energy-efficient processes for natural gas liquids recovery[J]. Energy,2017(128): 768-775.[6] 龚兵. 轻烃回收装置工艺模拟与优化[D]. 成都: 西南石油大学,2006.[7] 张超. 天然气液化及轻烃回收联合工艺开发及应用[J]. 现代化工,2021,41(2): 246-250.[8] 杨松. 天然气深冷装置工艺模拟与优化[D]. 大庆: 东北石油大学,2015.[9] Uwitonze H, Chaniago Y D, Lim H. Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant[J]. Energy,2022(254): 124373.[10] Khan M S,Chaniago Y D,Getu M,et al. Energy saving opportunities in integrated NGL/LNG schemes exploiting: Thermal-coupling common-utilities and process knowledge[J]. Chemical Engineering and Processing-Process Intensification,2014(82): 54-64.[11] 薛提微,刘海,衣秋杰,等. 温差有效度-反映换热器经济性的物理量[J]. 工程热物理学报,2017,38(6): 1305-1308.[12] Li K Y,Gao Y T,Zhang S A,et al. Study on the energy efficiency of bioethanol-based liquid hydrogen production process[J]. Energy,2022(238):122032.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(项目编号:22078259)
更新日期/Last Update: 2023-11-10