|本期目录/Table of Contents|

[1]魏永峰,李剑*,程子昂,等.HZSM-5 的低温水热改性及其己烯芳构化性能[J].石化技术与应用,2024,3:165-170.
 WEI Yong-feng,LI Jian,CHENG Zi-ang,et al.Low-temperature hydrothermal modification of HZSM-5 and its aromatization performance for hexene[J].Petrochemical technology & application,2024,3:165-170.
点击复制

HZSM-5 的低温水热改性及其己烯芳构化性能(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年3期
页码:
165-170
栏目:
出版日期:
2024-05-10

文章信息/Info

Title:
Low-temperature hydrothermal modification of HZSM-5 and its aromatization performance for hexene
文章编号:
1009-0045(2024)03-0165-06
作者:
魏永峰1李剑1*程子昂2杨丽娜1
1.辽宁石油化工大学 石油化工学院,辽宁 抚顺 113001;2.中海油田服务股份有限公司,天津 300450
Author(s):
WEI Yong-feng1LI Jian1CHENG Zi-ang2YANG Li-na1
1.School of Petrochemical Engineering,Liaoning Petrochemical University,Fushun 113001,China;2.China Oilfield Services Limited,Tianjin 300450,China
关键词:
HZSM-5低温水热改性孔结构烯烃己烯芳构化催化剂寿命选择性
Keywords:
HZSM-5low-temperature hydrothermal modificationpore structureolefinhexenearomatizationcatalyst lifespanselectivity
分类号:
TQ 241.1;TQ 426
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.03.0165
文献标识码:
B
摘要:
对 HZSM-5 在 70,100 和 150 ℃下进行低温水热改性,分别制得催化剂 T 70-HZ-5,T 100-HZ-5 和 T 150-HZ-5,利用 X射线衍射仪、X射线荧光光谱仪、物理吸附仪、化学吸附分析仪和红外光谱仪等对上述催化剂进行表征,并对其己烯芳构化催化性能进行了评价。结果表明:低温水热改性保持了 HZSM-5 的完整晶相结构,提高了其硅铝比[n(Si)/n(Al)],B 酸和 L 酸酸量比(B/L)及平均孔径;酸量的降低和孔径的增大有利于 HZSM-5 寿命的延长,B/L 值的增大有利于选择性的提高;在反应温度 405 ℃,反应压力 0.2 MPa,质量空速 2 h-1 的条件下,T 100-HZ-5 的催化寿命可达 44 h,比改性前延长了 36 h;当反应 8 h时,HZSM-5 的苯、甲苯和二甲苯混合物(BTX)选择性已迅速降到 35%左右,而 T 100-HZ-5 的仍接近55%。
Abstract:
In order to prepare catalysts of T 70-HZ-5, T 100-HZ-5, and T 150-HZ-5, low-temperature hydrothermal modification was carried out on HZSM-5 at 70, 100 and 150 ℃, respectively. These catalysts were characterized by X-ray diffraction, X-ray fluorescence spectroscopy, physical adsorption, chemical adsorption, and infrared spectroscopy, and their catalytic performance for hexene aromatization was evaluated. The results showed that low-temperature hydrothermal modification maintained the complete crystal structure of HZSM-5 and increased its silicon aluminum mole ratio [n (Si)/n (Al)], the ratio of B acid to L acid (B/L), and the average pore size. The decrease in acidity and the increase in pore size were beneficial for prolonging the lifespan of HZSM-5, while the increase in B/L value was beneficial for improving selectivity. Under the conditions of reaction temperature of 405 ℃, reaction pressure of 0.2 MPa, and mass space velocity of 2 h-1, the catalytic lifespan of T 100-HZ-5 could reach 44 h, which was 36 h longer than the catalyst without modification. After 8 h of reaction, the selectivity of the mixture of benzene, toluene, and xylene (BTX) in HZSM-5 had rapidly decreased to about 35%, while T 100-HZ-5 was still close to 55%.

参考文献/References

[1] 刘牛顿,王明义,张衡璇,等.ZnO/HZSM-5 催化甲醇制芳烃性能研究[J].低碳化学与化工,2022,47(2):61-68.[2] 房玉俊,苏晓芳,王巍,等.纳米 ZSM-5 分子筛的液相沉积改性及其催化己烯-1 芳构化反应性能[J].黑龙江大学工程学报,2021,12(3):57-62.[3] Sang Y,Jiao Q,Li H,et al.HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuels: Nano-ZSM-5 zeolites as the source[J].Journal of Nanoparticle Research,2014,16(12):1-11.[4] 赵亮,王海彦,魏民,等.催化裂化轻汽油在改性 HZSM-5 上的芳构化研究[J].工业催化,2005,13(9):6-9.[5] 李剑,曹蕾,王丽娟,等.乙酰丙酸改性对 HZSM-5 甲醇芳构化催化剂性能的影响[J].硅酸盐学报,2021,49(2):365-371.[6] Wang G L,Wu W,Wang Z,et al.Preparation of Zn-modified nano-ZSM-5 zeolite and its catalytic performance in aromatization of 1-hexene[J].Transactions of Nonferrous Metals Society of China,2015,25(5):1580-1586.[7] Zhang S,Gong Y,Zhang L,et al.Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: Finely tuning the acidic property[J]. Fuel Processing Technology,2015,129:130-138.[8] Almutairi S M T,Mezari B,Pidko E A,et al.Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite[J]. Journal of Catalysis,2013,307:194-203.[9] 宋月芹,胡伟,陈雪琴,等.改性ZSM-5分子筛催化剂制备及正己烷催化裂解性能分析[J].东北石油大学学报,2020,44(5):89-115.[10] Ding C,Wang X,Guo X,et al.Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst[J].Catalysis Communications,2008,9(4):487-493.[11] 盛清涛,牛艳霞,申峻,等.改性方法对 HZSM-5 分子筛孔结构、酸性质及乙醇脱水制乙烯催化性能的影响[J].石油学报(石油加工),2017,33(2):242-251.[12] Li H S.Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: Effect of SiO2/Al2O3 ratio in H-ZSM-5[J]. Applied Catalysis A: General,2013,450(15):152-159.[13] 陈国梁,张衡旋,贾艳明,等.不同金属改性 HZSM-5 在甲醇制芳烃上的研究[J].天然气化工(C 1化学与化工),2017,42(6):16-20.[14] Bibby D M,Aldridge L P,Milestone N B.Determination of the aluminium content of the zeolite ZSM-5 from peak positions in the X-ray powder diffraction pattern[J].Journal of Catalysis,1981,72(2):373-374.[15] 周振垒,李琢,王博,等.ZSM-5的水热改性及其在合成气经二甲醚制汽油中的应用[J].燃料化学学报,2013,41(11):1349-1355.[16] 张培青,王祥生,郭洪臣,等.水热处理对纳米 HZSM-5 沸石酸性质及其降低汽油烯烃性能的影响[J].催化学报,2003,24(12):900-904.[17] 中国科学院武汉物理与数学研究所.通过水热重结晶制备 ZSM-5 空心分子筛的方法:中国,201610850586.X[P].2018-08-24.[18] Zhou J,Hua Z,Liu Z,et al.Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties[J].ACS Catalysis,2011,1(4):287-291.[19] 郭春垒,于海斌,王银斌,等.水热处理对纳米 HZSM-5 分子筛催化甲醇制汽油性能的影响[J].石油学报(石油加工),2014,30(4):602-610.[20] 吕仁庆.直接法 ZSM-5 的改性及水热活性稳定性研究[D].天津:南开大学,2003.[21] 曹占国,刘民,王祥生,等.水热处理温度对纳米 CoMo/HZSM-5 催化剂选择加氢脱硫性能的影响[J].石油炼制与化工,2011,42(12):27-32.[22] 唐建远,赵成文,李永刚,等.水热处理 HZSM-5 分子筛的结构变化及其对甲苯甲醇烷基化制对二甲苯催化性能的影响[J].复旦学报(自然科学版),2015,54(4):516-521.[23] 张春梅,付廷俊,邵娟,等.介孔结构和助剂 Zn 对不同晶粒大小 ZSM-5 催化甲醇制芳烃反应性能的影响[J].化工进展,2019,38(4):1758-1767.[24] He Y,Liu M,Dai C,et al.Modification of nanocrystalline HZSM-5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in methanol to gasoline reaction[J].Chinese Journal of Catalysis,2013,34(6):1148-1158.[25] Rodrigues V D O,Eon J G,Faro A C.Correlations between dispersion,acidity,reducibility,and propane aromatization activity of gallium species supported on HZSM-5 zeolites[J].Journal of Physical Chemistry C,2010,114(10):4557-4567.[26] Xin S H,Wang Q,Xu J,et al.The acidic nature of "NMR-invisible" tri-coordinated framework aluminum species in zeolites[J].Chemical Science,2019,10(43):10159-10169.[27] 吴冰峰,王子健,马爱增,等.低碳烷烃芳构化反应机理研究进展[J].石油学报(石油加工),2021,37(3):690-699.

备注/Memo

备注/Memo:
辽宁省高等学校杰出青年学者成长计划资助项目(项目编号:LJQ 2015062);辽宁省科学技术厅资助项目(项目编号:20170540585);辽宁省教育厅资助项目(项目编号:L 2015296;L 2016018)
更新日期/Last Update: 2024-05-10