|本期目录/Table of Contents|

[1]李雯,谢恒,范宗良,等.丝光沸石用作二氧化碳吸附剂的研究进展[J].石化技术与应用,2024,3:229-232.
 LI Wen,XIE Heng,FAN Zong-liang,et al.Research progress of mordenite as carbon dioxide adsorbent[J].Petrochemical technology & application,2024,3:229-232.
点击复制

丝光沸石用作二氧化碳吸附剂的研究进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年3期
页码:
229-232
栏目:
出版日期:
2024-05-10

文章信息/Info

Title:
Research progress of mordenite as carbon dioxide adsorbent
文章编号:
1009-0045(2024)03-0229-04
作者:
李雯1谢恒2范宗良1张永泽3张莉3
1.兰州理工大学 石油化工学院,甘肃 兰州 730050;2.中国石油兰州石化公司,甘肃 兰州 730060;3.中国石油石油化工研究院 兰州化工研究中心,甘肃 兰州 730060
Author(s):
LI Wen1XIE Heng2FAN Zong-liang1ZHANG Yong-ze3ZHANG Li3
1.College of Petrochemical Engineering,Lanzhou University of Technology,Lanzhou 730050,China;2.Lanzhou Petrochemical Company,PetroChina,Lanzhou 730060,China;3.Lanzhou Petrochemical Research Center,Petrochemical Research Institute,PetroChina,Lanzhou 73005
关键词:
二氧化碳丝光沸石吸附固体吸附剂吸附容量直接空气碳捕获工程
Keywords:
carbon dioxidemordeniteadsorptionsolid adsorbentadsorption capacitydirect air carbon capture engineering
分类号:
O 647.32;TQ 424.23
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.03.0229
文献标识码:
A
摘要:
阐述了丝光沸石(MOR)的结构及其吸附CO2机理以及合成技术进展,重点对通过简单物理化学处理、金属离子改性和后官能化的MOR吸附CO2的研究进展进行了综述,并介绍了MOR在废气以及直接空气碳捕获工程中吸附CO2的应用情况。指出今后的研究方向是通过优化调整MOR框架、孔径分布以及组成或通过合成结合了不同特征结构的核壳沸石来实现对CO2吸附能力的提升。
Abstract:
The structure of mordenite (MOR) and its adsorption mechanism of CO2, as well as the progress of its synthesis technology were described. The research progress of CO2 adsorption by MOR through simple physical and chemical treatment, metal ion modification and post-functionalization was reviewed. The application of MOR in CO2 adsorption in exhaust gas and direct air carbon capture engineering was introduced. It was pointed out that the future research direction was to improve the CO2 adsorption capacity by optimizing the MOR framework, pore size distribution and composition, or by synthesizing core-shell zeolites with different characteristic structures.

参考文献/References

[1] Andriani D,Wresta A,Atmaja T D,et al.A review on optimization production and upgrading biogas through CO2 removal using various techniques[J].Applied Biochemistry and Biotechnology,2014,172(4):1909-1928.[2] Gao W,Liang S Y,Wang R J,et al.Industrial carbon dioxide capture and utilization: State of the art and future challenges[J].Chemical Society Reviews,2020,49(1):8584-8686.[3] Ozkan M,Akhavi A A,Coley W C.Progress in carbon dioxide capture materials for deep decarbonization[J].Chem,2022,8(1):141-173.[4] Shao R,Stangeland A.Amines used in CO2 capture - health and environmental impacts[R].Oslo:Bellona,2009:1-46.[5] Wang S.Utilisation of natural zeolites for air separation and pollution control[J].Handbook of Natural Zeolites,2012,261(5):569-587.[6] Wahono S K,Stalin J,Addai J,et al.Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity[J].Microporous and Mesoporous Materials,2020,294 (478):109871.[7] Zhan E S,Xiong Z P,Shen W J.Dimethyl ether carbonylation over zeolites[J].Journal of Energy Chemistry,2019,28(9):51-63.[8] Fu D L,Park Y,Davis M E.Confinement effects facilitate low-concentration carbon dioxide capture with zeolites[J].PNAS,2022,119(39):e2211544119. [9] Malik J A N.US academies call for research agenda on negative emissions technologies and reliable sequestration[J].Springer Science and Business Media LLC, 2019,44(1):13-15.[10] Chauvy R,Dubois L.Life cycle and techno-economic assessments of direct air capture processes: An integrated review[J].International Journal of Energy Research,2022,46(8):10320-10344.[11] Sabatino F,Grimm A,Gallucci F,et al.A comparative energy and costs assessment and optimization for direct air capture technologies[J].Joule,2021,5(8):2047-2076.[12] Abdelrahman E A,Hegazey R M,Alharbi A,et al.Facile synthesis of mordenite nanoparticles for efficient removal of Pb(Ⅱ) ions from aqueous media[J].Journal of Inorganic and Organometallic Polymers and Materials,2020,30(7):1369-1383.[13] Bolshakov A,Romerohidalgo D E,Vanhoof A J F,et al.Front cover: Mordenite nanorods prepared by an inexpensive pyrrolidine-based mesoporogen for alkane hydroisomerization[J].ChemCatChem,2019,11(6):2803-2811. [14] Klunk M A,Schrpfer S B,Dasgupta S,et al.Synthesis and characterization of mordenite zeolite from metakaolin and rice husk ash as a source of aluminium and silicon[J].Chemical Papers,2020,74(8):2481-2489.[15] Li S,Wu H,Poll R C J,et al.Synthesis of nanocrystalline mordenite zeolite with improved performance in benzene alkylation and n-paraffins hydroconversion[J].ChemCatChem,2022,14(9):e202101852.[16] Liu M N,Xie Z X,Luo Q X,et al.Synthesis of nanosized mordenite with enhanced catalytic performance in the alkylation of benzene with benzyl alcohol[J].Industrial & Engineering Chemistry Research,2022,61(2):1078-1088.[17] Liu X C,Lu P,Jiang W L,et al.Organic filler-free synthesis of mordenite molecular sieves using industrial residues[J].Chemical Engineering Science,2023,281(12):118967.[18] Lankapati H M,Lathiya D R,Choudhary L,et al.Mordenite-type zeolite from waste coal fly ash:Synthesis, characterization and its application as a sorbent in metal ions removal[J].Chemistry Select,2020,5(3):1193-1198. [19] Lathiya D R,Bhatt D V,Maheria K C,et al.Sulfated fly-ash catalyzed biodiesel production from maize acid oil feedstock: A comparative study of taguchi and box-behnken design[J].Chemistry Select,2019,4(14):4392-4397.[20] Kim G J,Ahn W S.Direct synthesis and characterization of high-SiO2-content mordenites[J].Zeolites,1991,11(7):745-750.[21] Wahono S K,Dwiatmoko A A,Cavallaro A,et al.Amine-functionalized natural zeolites prepared through plasma polymerization for enhanced carbon dioxide adsorption[J].Plasma Processes and Polymers,2021,18(8):e2100028.[22] Serra R M,Vilhena F S D,Gutierrez L B,et al.Experimental and theoretical investigation of the Na+→Li+ cation exchange in mordenite and its effect on CO2 adsorption properties[J].Adsorption,2021,27(6):891-907.[23] Zhou Y,Zhang J L,Wang L,et al.Self-assembled iron-containing mordenite monolith for carbon dioxide sieving[J].Science,2021,373(16):315-320.[24] Fu D L,Park Y K,Davis M E.Zinc containing small-pore zeolites for capture of low concentration carbon dioxide[J].Angewandte Chemie,2022,61(5):e202112916.[25] Kwon D,Numan M,Kim J M, et al.Tailoring the CO2 selective adsorption properties of MOR zeolites by post functionalization[J].Journal of CO2 Utilization,2022,62(6):102064-102071.[26] 张雄福,王金渠.吸附法脱除乙醛装置尾气乙烯中的二氧化碳回收乙烯的新吸附剂研究[J].石油学报(石油加工),1998,14(2):70-74.[27] 刘淑芹,王金渠,殷德宏.C2H4-CO2在Co-丝光沸石上吸附分离研究[J].大连理工大学学报,2000,40(6):676-680.[28] Rim G,Kong F,Song M,et al.Sub-ambient temperature direct air capture of CO2 using amine-impregnated MIL-101(Cr) enables ambient temperature CO2 recovery[J].JACS Au,2022,2(2):380-393.[29] Fu D L,Davis M E.Toward the feasible direct air capture of carbon dioxide with molecular sieves by water management[J].Cell Reports Physical Science,2023,4(5):101389. [30] Cmarik G E,Knox J C.CO2 removal for the international space station-4-bed molecular sieve material selection and system design[C]//International Conference on Environmental Systems. 49th International Conference on Environmental Systems. Boston:International Conference on Environmental Systems,2019:1-10.[31] Liu S,Chen Y,Yue B,et al.Regulating extra-framework cations in faujasite zeolites for capture of trace carbon dioxide[J].Chemistry: A European Journal,2022,28(50):e202201659.[32] Oda A,Hiraki S,Harada E,et al.Unprecedented CO2 adsorption behaviour by 5 A-type zeolite discovered in lower pressure region and at 300 K[J].Journal of Materials Chemistry A,2021,9(12):7531-7545.[33] Wilson S M W,Tezel F H.Direct dry air capture of CO2 using VTSA with faujasite zeolites[J].Industrial & Engineering Chemistry Research,2020,59(18):8783-8794.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2024-05-10