|本期目录/Table of Contents|

[1]周微,赖晓玲*,胡明亮,等.吸收强化甲烷水蒸气重整制氢Ni基复合催化材料的研究进展[J].石化技术与应用,2024,3:233-240.
 ZHOU Wei,LAI Xiao-ling,HU Ming-liang,et al.Research progress on Ni-based composite catalytic materials for hydrogen production by sorption-enhanced steam methane reforming[J].Petrochemical technology & application,2024,3:233-240.
点击复制

吸收强化甲烷水蒸气重整制氢Ni基复合催化材料的研究进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年3期
页码:
233-240
栏目:
出版日期:
2024-05-10

文章信息/Info

Title:
Research progress on Ni-based composite catalytic materials for hydrogen production by sorption-enhanced steam methane reforming
文章编号:
1009-0045(2024)03-0233-08
作者:
周微赖晓玲*胡明亮李滨
中国海油天津化工研究设计院有限公司,天津 300131
Author(s):
ZHOU WeiLAI Xiao-lingHU Ming-liangLI Bin
Tianjin Chemical Research and Design Institute Co Ltd,CNOOC,Tianjin 300131,China
关键词:
吸收强化甲烷水蒸气重整Ni基复合催化材料制氢
Keywords:
sorption-enhancedsteam methane reformingNi-based composite catalytic materialshydrogen production
分类号:
TE 624.9+1
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.03.0233
文献标识码:
A
摘要:
阐述了吸收强化甲烷水蒸气重整制氢(SESMR)反应机理及其影响因素,重点从活性中心Ni,助剂(铝、镧、锆、镁、钴)掺杂和构型调整方面综述了SESMR工艺中Ni基复合催化材料的研究进展,还介绍了SESMR复合催化剂在应用中的再生、以及其他复合催化剂的研发情况。并指出:易积炭和高温烧结是Ni/CaO复合催化剂大规模应用于SESMR工艺的技术阻碍,如何降低复合催化剂在脱碳再生过程中的高温、高能耗是SESMR工艺应用的主要瓶颈,开发更加低成本、高活性、高稳定性的高效能SESMR复合催化材料是今后研究的核心。
Abstract:
The reaction mechanism and influencing factors of sorption-enhanced steam methane reforming for hydrogen production(SESMR) were described. The research progress of Ni-based composites in SESMR process was reviewed emphatically in terms of Ni active sites,doping of additives (aluminum,lanthanum,zirconium,magnesium and cobalt) and configuration adjustment. In addition,the regeneration of SESMR composite catalysts and the development of other composite catalysts were also introduced. It was pointed out that easy carbon deposition and high temperature sintering were the technical obstacles to the large-scale application of Ni/CaO composite catalyst in SESMR field. It was the main bottleneck of SESMR process application that how to reduce the high temperature and high energy consumption of composite catalysts in the process of decarbonization and regeneration. The development of the more low cost,high activity,high stability and high efficiency SESMR composite materials was the core of the future research.

参考文献/References

[1] Ogden J M,Steinbugler M M,Kreutz T G.A comparison of hydrogen,methanol and gasoline as fuels for fuel cell vehicles:Implications for vehicle design and infrastructure development[J].Journal of Power Sources,1999,79(2):143-168.[2] Midilli A,Ay M,Dincer I,et al.On hydrogen and hydrogen energy strategies:I:Current status and needs[J].Renewable and Sustainable Energy Reviews,2005,9(3):255-271.[3] Di G A,Gallucci K.Sorption enhanced steam methane reforming based on nickel and calcium looping:A review[J].Chemical Engineering and Processing-Process Intensification,2018(130):240-252.[4] Carvill B T,Hufton J R,Anand M,et al.Sorption-enhanced reaction process[J].AIChE Journal,1996,42(10):2765-2772.[5] Ding Y,Alpay E.Adsorption-enhanced steam-methane reforming[J].Chemical Engineering Science,2000,55(18):3929-3940.[6] Wu S,Li L,Zhu Y,et al.A microsphere catalyst complex with nano CaCO3 precursor for hydrogen production used in ReSER process[J].Engineering Sciences,2010,8(1):22-26.[7] Sun S,Lv Z,Qiao Y,et al.Integrated CO2 capture and utilization with CaO-alone for high purity syngas production[J].Carbon Capture Science & Technology,2021(1):100001-100005.[8] Balasubramanian B,Ortiz A L,Kaytakoglu S,et al.Hydrogen from methane in a single-step process[J].Chemical Engineering Science,1999,54(15/16):3543-3552.[9] Hu Y,Liu L,Xu K,et al.Efficiency analysis of sorption-enhanced method in steam methane reforming process[J].Carbon Resources Conversion,2023,6(2):132-141.[10] Maluf S S,Assaf E M.Ni catalysts with Mo promoter for methane steam reforming[J].Fuel,2009,88(9):1547-1553.[11] Meloni E,Martino M,Palma V.A short review on Ni based catalysts and related engineering issues for methane steam reforming[J].Catalysts,2020,10(3):352-390.[12] Yancheshmeh M S,Radfarnia H R,Iliuta M C.High temperature CO2 sorbents and their application for hydrogen production by sorption enhanced steam reforming process[J].Chemical Engineering Journal,2016(283):420-444.[13] 赖晓玲,周微,臧甲忠,等.氧化钙基吸收剂低温循环吸收二氧化碳的研究进展[J].无机盐工业,2023,55(5):16-23.[14] Zhang Q,Shen C,Zhang S,et al.Steam methane reforming reaction enhanced by a novel K2CO3-doped Li4SiO4 sorbent:Investigations on the sorbent and catalyst coupling behaviors and sorbent regeneration strategy[J].International Journal of Hydrogen Energy,2016,41(8):4831-4842.[15] Ochoa Z E,Rusten H K,Jakobsen H A,et al.Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent:Sorption kinetics and reactor simulation[J].Catalysis Today,2005,106(1/4):41-46.[16] Halabi M H,De C M,Van D S J,et al.High capacity potassium-promoted hydrotalcite for CO2 capture in H2 production[J].International Journal of Hydrogen Energy,2012,37(5):4516-4525.[17] Halabi M H,De C M,Van D S J,et al.A novel catalyst-sorbent system for an efficient H2 production with in-situ CO2 capture[J].International Journal of Hydrogen Energy,2012,37(6):4987-4996.[18] Radfarnia H R,Iliuta M C.Development of Al-stabilized CaO-nickel hybrid sorbent-catalyst for sorption-enhanced steam methane reforming[J].Chemical Engineering Science,2014(109):212-219.[19] Radfarnia H R,Iliuta M C.Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent-catalyst[J].Chemical Engineering and Processing:Process Intensification,2014(86):96-103.[20] Di G A,Gallucci K,Foscolo P U,et al.Effect of Ni precursor salts on Ni-mayenite catalysts for steam methane reforming and on Ni-CaO-mayenite materials for sorption enhanced steam methane reforming[J].International Journal of Hydrogen Energy,2019,44(13):6461-6480.[21] 郭红霞,南雁,寇晓晨,等.钙基CO2吸附剂的惰性掺杂和形貌调控研究进展[J].化工进展,2019,38(1):457-466.[22] Di G A,Girr J,Massacesi R,et al.Sorption enhanced steam methane reforming by Ni-CaO materials supported on mayenite[J].International Journal of Hydrogen Energy,2017, 42(19):13661-13680.[23] Vanga G,Gattia D M,Stendardo S,et al.Novel synthesis of combined CaO-Ca12Al14O33-Ni sorbent-catalyst material for sorption enhanced steam reforming processes[J].Ceramics International,2019,45(6):7594-7605.[24] Micheli F,Sciarra M,Courson C,et al.Catalytic steam methane reforming enhanced by CO2 capture on CaO based bifunctional compounds[J].Journal of Energy Chemistry,2017,26(5):1014-1025.[25] Xu P,Zhou Z,Zhao C,et al.Ni/CaO-Al2O3 bifunctional catalysts for sorption-enhanced steam methane reforming[J].AIChE Journal,2014,60(10):3547-3556.[26] Xu P,Zhou Z,Zhao C,et al.Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming[J].Catalysis Today,2016(259):347-353.[27] Jing J,Wang S,Zhang X,et al.Influence of Ca/Al molar ratio on structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J].Journal of Fuel Chemistry and Technology,2017,45(8):956-962.[28] Wang N N,Feng Y C,Liu L,et al.Effects of preparation methods on the structure and property of Al-stabilized CaO-based sorbents for CO2 capture[J].Fuel Processing Technology,2018(173):276-284.[29] Feng H Z,Lan P Q,Wu S F.A study on the stability of a NiO-CaO/Al2O3 complex catalyst by La2O3 modification for hydrogen production[J].International Journal of Hydrogen Energy,2012,37(19):14161-14166.[30] Zhao C,Zhou Z,Cheng Z,et al.Sol-gel-derived,CaZrO3-stabilized Ni/CaO-CaZrO3 bifunctional catalyst for sorption-enhanced steam methane reforming[J].Applied Catalysis B(Environmental),2016(196):16-26.[31] Wu S F,Wang L L.Improvement of the stability of a ZrO2-modified Ni-nano-CaO sorption complex catalyst for ReSER hydrogen production[J].International Journal of Hydrogen Energy,2010,35(13):6518-6524.[32] Jing J Y,Liu L,Xu K,et al.Improved hydrogen production performance of Ni-Al2O3/CaO-CaZrO3 composite catalyst for CO2 sorption enhanced CH4/H2O reforming[J].International Journal of Hydrogen Energy,2023,48(7):2558-2570.[33] 许凯,王世东,荆洁颖,等.MgO对NiMgAlCa复合催化剂结构及吸附强化制氢性能的影响[J].洁净煤技术,2022,28(1):148-154.[34] Ghungrud S A,Dewoolkar K D,Vaidya P D.Cerium-promoted bifunctional hybrid materials made of Ni,Co and hydrotalcite for sorption-enhanced steam methane reforming (SESMR)[J].International Journal of Hydrogen Energy,2019,44(2):694-706.[35] Chen X,Yang L,Zhou Z,et al.Core-shell structured CaO-Ca9Al6O18@Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming[J].Chemical Engineering Science,2017(163):114-122.[36] Xu J Y,Wu S F.Stability of complex catalyst with NiO@TiO2 core-shell structure for hydrogen production[J].International Journal of Hydrogen Energy,2018,43(22):10294-10300.[37] 许凯,刘璐,荆洁颖,等.CaO-Ca3Al2O6@Ni-SiO2复合催化剂制备及制氢性能[J].燃料化学学报,2022,50(12):1619-1628.[38] Profetil P R,Ticianelli E A,Assaf E M.Co/Al2O3 catalysts promoted with noble metals for production of hydrogen by methane steam reforming[J].Fuel,2008,87(10/11):2076-2081.[39] Craciun R,Daniell W,Knozinger H.The effect of CeO2 structure on the activity of supported Pd catalysts used for methane steam reforming[J].Applied Catalysis A(General),2002, 230(1/2):153-168.[40] De S V P,Costa D,Dos S D,et al.Pt-promoted α-Al2O3-supported Ni catalysts:Effect of preparation conditions on oxi-reduction and catalytic properties for hydrogen production by steam reforming of methane[J].International Journal of Hydrogen Energy,2012,37(13):9985-9993.[41] Salazar M D,Berry D A,Cugini A.Role of lattice oxygen in the partial oxidation of methane over Rh/zirconia-doped ceria. Isotopic studies[J].International Journal of Hydrogen Energy,2010,35(5):1998-2003.[42] Berman A,Karn R K,Epstein M.Kinetics of steam reforming of methane on Ru/Al2O3 catalyst promoted with Mn oxides[J].Applied Catalysis A(General),2005,282(1/2):73-83.[43] Kim S M,Abdala P M,Hosseini D,et al.Bi-functional Ru/Ca3Al2O6-CaO catalyst-CO2 sorbent for the production of high purity hydrogen via sorption-enhanced steam methane reforming[J].Catalysis Science & Technology,2019,9(20):5745-5756.[44] Broda M,Kierzkowska A M,Baudouin D,et al.Sorbent-enhanced methane reforming over a Ni-Ca-based,bifunctional catalyst sorbent[J].ACS Catalysis,2012,2(8):1635-1646.[45] Dang C,Wu S,Cao Y,et al.Co-production of high quality hydrogen and synthesis gas via sorption-enhanced steam reforming of glycerol coupled with methane reforming of carbonates[J].Chemical Engineering Journal,2019(360):47-53. [46] Dang C,Luo J,Yang W,et al.Low-temperature catalytic dry reforming of methane over Pd promoted NiCaO-Ca12Al14O33 multifunctional catalyst[J].Industrial & Engineering Chemistry Research,2021,60(50):18361-18372. [47] Dang C,Long J,Li H,et al.Pd-promoted Ni-Ca-Al bifunctional catalyst for integrated sorption-enhanced steam reforming of glycerol and methane reforming of carbonate[J].Chemical Engineering Science,2021(230):116226-116236.

备注/Memo

备注/Memo:
中国海洋石油集团有限公司CCUS重大专项基金资助项目(项目编号:KJGG-2022-12-CCUS-030403)
更新日期/Last Update: 2024-05-10