|本期目录/Table of Contents|

[1]张生安,温欣,陈星,等.天然气脱硫脱碳和脱水工艺的节能模拟与优化[J].石化技术与应用,2024,5:364-370.
 ZHANG Sheng-an,WEN Xin,CHEN Xing,et al.Energy-saving simulation and optimization of natural gas desulfurization and decarbonization and dehydration process[J].Petrochemical technology & application,2024,5:364-370.
点击复制

天然气脱硫脱碳和脱水工艺的节能模拟与优化(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年5期
页码:
364-370
栏目:
出版日期:
2024-09-10

文章信息/Info

Title:
Energy-saving simulation and optimization of natural gas desulfurization and decarbonization and dehydration process
文章编号:
1009-0045(2024)05-0364-07
作者:
张生安1温欣2陈星2刘桂莲1*
(1.西安交通大学 化学工程与技术学院,陕西 西安 710049;2.中国石油长庆油田分公司 第一采气厂,陕西 榆林 718500)
Author(s):
ZHANG Sheng-an1 WEN Xin2 CHEN Xing2 LIU Gui-lian1
(1.School of Chemical Engineering and Technology, Xi′an Jiaotong University, Xi′an 710049, China;2.The First Gas Plant of Changqing Oilfield Company, PetroChina, Yulin 718500, China)
关键词:
天然气净化脱硫脱碳脱水节能分析夹点技术灵敏度分析模拟优化
Keywords:
natural gas purificationdesulfurization and decarbonizationdehydrationenergy-saving analysispinch technologysensitivity analysissimulation and optimization
分类号:
TE 646;TE 319
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.05.0364
文献标识码:
B
摘要:
针对某450万m3/d天然气净化装置,利用Aspen HYSYS软件对天然气脱硫脱碳和脱水工艺进行建模,基于夹点技术分析天然气净化装置的换热网络节能潜力和不合理换热之处,基于灵敏度分析操作参数节能潜力,确定甲基二乙醇胺(MDEA)和三甘醇(TEG)溶剂的最佳循环量。结果表明:通过夹点技术分析,天然气净化装置换热网络的节能潜力为307.80 kW,占现行加热公用工程和冷却公用工程消耗量的4.97%,5.65%;通过灵敏度分析,MDEA和TEG的循环量分别取95.00,5.00 m3/h,操作参数优化的最大节能潜力为2 527.95 kW,占现行加热公用工程和冷却公用工程消耗量的40.86%,46.43%;通过换热网络改造和操作参数优化,装置最大节能量为2 795.41 kW,占现行加热和冷却公用工程消耗量的45.18%,51.34%;2种节能优化方案可节省操作费用144.72万元/a,回收期为0.174 a。
Abstract:
For a natural gas purification plant with a capacity of 4.5 million m3/d, Aspen HYSYS software was used to model the natural gas desulfurization, decarbonization, and dehydration processes. Based on the pinch technology, the energy-saving potentials and unreasonable heat transfer of the heat exchange network of the process were analyzed. Based on the operational energy-saving potentials through sensitivity analysis, the optimal cycle flow rate of MDEA and TEG solvents could be determined. The results showed that the energy-saving potentials of the natural gas purification plant′s heat exchange network was 307.80 kW, corresponding to 4.97% and 5.65% of the current heating and cooling utilities consumption. Through sensitivity analysis, the cycle flow rate of MDEA and TEG were 95.00 m3/h and 5.00 m3/h, and the maximum energy-saving potentials of operation parameter optimization was 2 527.95 kW, accounting for 40.86% and 46.43% of the current heating and cooling utilities consumption. According to the heat exchange network retrofit and the optimization of operating parameters, the maximum energy-saving values of the process was 2 795.41 kW, corresponding to 45.18% and 51.34% of the current heating and cooling utilities consumption. For the proposed two energy-saving optimization schemes, the annual operating cost savings was 1 447.2 thousand Yuan/a, and the recovery period was 0.174 a.

参考文献/References

[1] Qiu K,Shang J F,Ozturk M,et al. Studies of methyldiethanolamine process simulation and parameters optimization for high-sulfur gas sweetening[J]. Journal of Natural Gas Science and Engineering,2014,21:379-385.[2] 成庆林,王雪,孟岚,等.天然气三甘醇脱水工艺优化模拟与碳排放核算[J].天然气与石油,2022,40(4):32-38.[3] Al-Lagtah N M A,Al-Habsi S,Onaizi S A. Optimization and performance improvement of Lekhwair natural gas sweetening plant using Aspen HYSYS[J]. Journal of Natural Gas Science and Engineering,2015,26:367-381.[4] 付敬强.CT 8-5选择性脱硫溶液在四川长寿天然气净化分厂使用效果评估[J].石油与天然气化工,1999(3):184-186.[5] 王开岳.天然气净化工艺:脱硫脱碳、脱水、硫磺回收及尾气处理[M]. 北京:石油工业出版社,2005:254-255.[6] 季洪强.天然气脱硫脱碳工艺的模拟优化[J]. 石化技术与应用,2017,35(1):32-36.[7] 周洁.靖边气田天然气净化系统模拟与关键参数研究[D].西安:西安石油大学,2022.[8] 王润平,杨岳鹏,曹建峰.基于NSGA-II算法的TEG脱水工艺能耗分析及参数优化[J].油气田地面工程,2024,43(1):15-21.[9] 杨冬磊,张朋岗,骆兴龙,等.基于响应面法的三甘醇脱水参数优化[J].石油与天然气化工,2023,52(3):16-23.[10] 肖荣鸽,庄琦,王栋,等.基于软件模拟的天然气醇胺法脱硫脱碳工艺研究进展[J].天然气化工(C 1化学与化工),2021,46(4):21-26.[11] Liu G H,Zhu L,Cao W H,et al. New technique integrating hydrate-based gas separation and chemical absorption for the sweetening of natural gas with high H2S and CO2 contents[J]. ACS Omega,2021,6:26180-26190.[12] Eldemerdash U N,Abdrabou M,El-Sheltawy S T,et al. Assessment of chemical enhancement and energy consumption of natural gas dehydration processes[J]. Gas Science and Engineering,2024,123:205226.[13] 梁平,卢海东,张哲,等.长庆油田某天然气净化厂实现GB 17820—2018达标工艺方案研究[J].石油与天然气化工,2020,49(1):1-7.[14] Neagu M,Cursaru D L. Technical and economic evaluations of the triethylene glycol regeneration processes in natural gas dehydration plants[J]. Journal of Natural Gas Science and Engineering,2017,37:327-40.[15] 张生安,刘桂莲.高效太阳能电解水制氢系统及其性能的多目标优化[J].化工学报,2023,74(3):1260-1274.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(项目编号:22078259)
更新日期/Last Update: 2024-09-10