|本期目录/Table of Contents|

[1]马超a,崔国华b,陈利维a,等.航空煤油加氢装置加热炉CO含量超标问题分析及对策[J].石化技术与应用,2024,5:381-384.
 MA Chaoa,CUI Guo-huab,CHEN Li-weia,et al.Analysis and countermeasures of excessive CO content in heating furnace of aviation kerosene hydrogenation unit[J].Petrochemical technology & application,2024,5:381-384.
点击复制

航空煤油加氢装置加热炉CO含量超标问题分析及对策(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年5期
页码:
381-384
栏目:
出版日期:
2024-09-10

文章信息/Info

Title:
Analysis and countermeasures of excessive CO content in heating furnace of aviation kerosene hydrogenation unit
文章编号:
1009-0045(2024)05-0381-04
作者:
马超a崔国华b陈利维a王彦飞b孙晨c吴赛b
(中国石油宁夏石化公司 a.规划和科技信息部;b.炼油二部;c.机动设备部,宁夏 银川 750026)
Author(s):
MA ChaoaCUI Guo-huabCHEN Li-weiaWANG Yan-feibSUN ChencWU Saib
(Ningxia Petrochemical Company a.Planning and Technology Information Department;b.Oil Refining Department 2;c.Machine and Equipment Department,PetroChina,Yinchuan 750026,China)
关键词:
航空煤油加氢加热炉燃烧器CO含量氮氧化物排放指标
Keywords:
aviation kerosene hydrogenation heating furnace burner CO content nitrogen oxide emission standard
分类号:
TE 665.6+3;TE 626.23
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.05.0381
文献标识码:
B
摘要:
分析了某石化公司航空煤油加氢装置加热炉运行过程中CO超标的问题,并提出改进措施,在不改变燃烧器本体基础上,通过在线改造燃料气枪,设计出燃料分级低氮低CO燃烧器。结果表明:引起加热炉运行期间产生大量CO的原因主要有加热炉炉膛温度低、燃烧器实际热负荷变动大、燃烧器结构局限性等;经计算流体动力学(CFD)模拟,改造后燃烧器火焰中心的最高燃烧温度为1 364.18 ℃,低于NOx大量生成的温度(1 450 ℃以上),NOx,CO排放质量浓度分别为35.00,26.45 mg/m3;改造后的燃烧器通过燃料预混耦合燃料分级燃烧的方式,调整2套燃料气枪燃烧负荷,使得火焰燃烧更完全,加热炉总烟气中CO质量浓度由改造前最高(1 262 mg/m3)降至最低(18.00 mg/m3),同时,烟气中NOx,SO2等污染物远低于排放指标。
Abstract:
The problem of CO exceeding the standard was analyzed during the operation of the heating furnace in the aviation kerosene hydrogenation unit of a petrochemical company, and improvement measure was proposed. On the basis of not changing the burner body, a fuel staged low nitrogen and low CO burner was designed by online modification of the fuel gas gun. The results showed that the main reasons for the generation of a large amount of CO during the operation of the heating furnace were the low furnace temperature, large fluctuations in the actual heat load of the burner, and limitations in the burner structure. According to Computational Fluid Dynamics(CFD) simulation, the maximum combustion temperature at the center of the modified burner flame was 1 364.18 ℃, which was lower than the temperature (above 1 450 ℃ )where a large amount of NOx was generated. The mass concentrations of NOx and CO emissions were 35.00 and 26.45 mg/m3, respectively. The modified burner could adjust the combustion load of two sets of fuel gas guns through fuel premixed coupling fuel staged combustion, making the flame combustion more completely. The mass concentration of CO in the total flue gas of the heating furnace had decreased from the highest 1 262 mg/m3 before the modification to the lowest 18.00 mg/m3. At the same time, pollutants such as NOx and SO2 in the flue gas were far below the emission standard.

参考文献/References

[1] 姚稷天,姜战飞.加热炉烟气排放环保达标的措施[J].工业炉,2018,40(4):56-59.[2] 张婧帆,李玖重,周天宇,等.加热炉低CO低氮燃烧技术开发与应用[J].石油化工设备技术,2023,44(3):33-35.[3] 王艳丽.基于降低氮氧化物排放量的加热炉低氮燃烧器的改造[J].工业加热,2017,46(3):52-57.[4] 唐规.炼厂加热炉低氮燃烧器改造技术现状[J].广东化工,2018,45(11):139-140.[5] 李玖重.普通燃烧器在线低氮改造技术研究及应用[J].石油石化绿色低碳,2020,5(1):32-35.[6] 景晔.新型低氮燃烧器的原理及应用[J].石化技术,2023,30(8):16-18.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2024-09-10