[1] Liu W M, Li L, Lin S X, et al. Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming[J]. Journal of Energy Chemistry,2021,65: 34-47.[2] Zhao Y T, Wang Z C, Yang W J, et al. Promotional effect of NiSn interaction over Ni supported on Sn-incorporated MCM-41 catalysts for CO2 reforming of CH4[J]. ChemNanoMat,2021,7(8):927-934.[3] Yan X L, Hu T, Liu P, et al. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2[J]. Applied Catalysis B: Environmental,2019,246:221-231.[4] He L, Li M R, Li W C, et al. Robust and coke-free Ni catalyst stabilized by 1-2 nm-thick multielement oxide for methane dry reforming[J]. ACS catalysis,2021,11(20): 12409-12416.[5] 黄兴, 吕政国, 李珍珍, 等. 甲烷干法重整催化剂抗积炭性能的研究进展[J]. 低碳化学与化工,2023,48(2): 14-22.[6] Mortensen P M, Dybkjaer I. Industrial scale experience on steam reforming of CO2-rich gas[J]. Applied Catalysis A: General,2015,495: 141-151.[7] Wang D, Littlewood P, Marks T J. Coking can enhance product yields in the dry reforming of methane[J]. ACS catalysis,2022,12(14): 8352-8362.[8] 史克英, 苏群, 赵占芬, 等. 天然气二氧化碳转化制合成气的研究─催化剂抗积炭性能(英文)[J]. Journal of Natural Gas Chemistry,1999(2): 105-114.[9] Nikoo M K, Amin N A S. Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation[J]. Fuel Processing Technology,2011,92(3): 678-691.[10] 苏通明, 王传棽, 宫博, 等. 甲烷干重整Ni基催化剂上积炭调控的研究进展[J]. 低碳化学与化工,2023,48(3): 1-10.[11] Zou Z P, Zhang T, Lv L, et al. Preparation adjacent Ni-Co bimetallic nano catalyst for dry reforming of methane [J]. Fuel,2023,343(1): 128013.[12] Wu P, Tao Y W, Ling H J, et al. Cooperation of Ni and CaO at interface for CO2 reforming of CH4: A combined theoretical and experimental study[J]. ACS Catalysis,2019,9(11):10060-10069.[13] Sagar V T, Pintar A. Enhanced surface properties of CeO2 by MnOx doping and their role in mechanism of methane dry reforming deduced by means of in-situ DRIFTS[J]. Applied Catalysis, A. General: An International Journal Devoted to Catalytic Science and Its Applications,2020,599:117603.[14] Zhang S S, Ying M, Yu J, et al. NixAl1O2-δ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism[J]. Applied Catalysis B: Environmental,2021,291: 120074.[15] 丁晨旭, 汤睿, 钱渊, 等. Ni基催化剂中Ni颗粒粒径对甲烷干气重整反应的影响及其应用展望[J]. 天然气化工(C 1化学与化工),2022,47(2): 1-10.[16] Lu Y, Guo D, Ruan Y Z, et al. Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane[J].Journal of CO2 Utilization, 2018, 24:190-199.[17] 彭冲, 刘鹏, 胡永康, 等. 低温等离子体构筑高效Ni基催化剂进展[J]. 化工进展,2021,40(7): 3553-3563.[18] Dang C X, Xia H H, Luo J L.Dendritic layered Ni/Al2O3 derived from NiAl2O4 as high-performance catalyst for dry reforming of methane[J].Fuel Processing Technology, 2023,241: 107615.[19] 仇媛. 核壳催化剂空间限域结构的调控及在CH4-CO2重整反应的应用[D].太原:山西大学, 2019.[20] Wang C Z,Qiu Y, Zhang X M,et al.Geometric design of a Ni@silica nano-capsule catalyst with superb methane dry reforming stability: Enhanced confinement effect over the nickel site anchoring inside a capsule shell with an appropriate inner cavity[J].Catalysis Science & Technology,2018,8(19): 4877-4890.[21] Wu J W, Gao J,W Lian S S. Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C-H activation[J]. Applied Catalysis B: Environmental,2022,314:121516.[22] Liang D F, Wang Y S, Chen M Q, et al. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts[J]. Applied Catalysis B: Environmental,2023,322: 122088.[23] Diao Y N, Zhang X, Liu Y, et al. Plasma-assisted dry reforming of methane over Mo2C-Ni/Al2O3 catalysts: Effects of β-Mo2C promoter[J]. Applied Catalysis B: Environmental,2022,301: 120779.[24] Feng J Y, Sun X, Li Z, et al. Plasma-assisted reforming of methane[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany),2022,9(34):2203221.[25] Li J W, Dou L G, Gao Y, et al. Revealing the active sites of the structured Ni-based catalysts for one-step CO2/CH4 conversion into oxygenates by plasma-catalysis[J]. Journal of CO2 Utilization,2021,52: 101675.[26] Zhang S, Gao Y, Sun H, et al. Dry reforming of methane by microsecond pulsed dielectric barrier discharge plasma: Optimizing the reactor structures[J]. High Voltage,2022,7(4): 718-729.[27] 高远, 窦立广, 李江伟, 等. 低温等离子体-催化剂协同催化CO2转化进展[J]. 高电压技术,2022,48(4): 1607-1619.[28] 何展军,黄敏,林铁军,等.光热催化甲烷干重整研究进展[J].物理化学学报,2023,39(9):22-34.[29] Yao Y, Li B, Gao X W, et al. Highly efficient solar-driven dry reforming of methane on a Rh/LaNiO3 catalyst through a light-induced metal-to-metal charge transfer process[J]. Advanced Materials,2023,35(39): 2303654.[30] Rao Z Q, Cao Y H, Huang Z A, et al. Insights into the nonthermal effects of light in dry reforming of methane to enhance the H2/CO ratio near unity over Ni/Ga2O3[J]. ACS Catalysis,2021,11(8):4730-4738.[31] Wu S W, Li Y Z, Zhang Q, et al. Formation of NiCo alloy nanoparticles on Co doped Al2O3 leads to high fuel production rate, large light?鄄to?鄄fuel efficiency, and excellent durability for photothermocatalytic CO2 reduction[J]. Advanced Energy Materials,2020,10(42):2002602.