|本期目录/Table of Contents|

[1]郑石红,施家琦,李阳*.电催化还原硝酸盐废水用阴极材料的研究进展[J].石化技术与应用,2024,5:395-400.
 ZHENG Shi-hong,SHI Jia-qi,LI Yang.Research progress on cathode materials for electrocatalytic reduction of nitrate wastewater[J].Petrochemical technology & application,2024,5:395-400.
点击复制

电催化还原硝酸盐废水用阴极材料的研究进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年5期
页码:
395-400
栏目:
出版日期:
2024-09-10

文章信息/Info

Title:
Research progress on cathode materials for electrocatalytic reduction of nitrate wastewater
文章编号:
1009-0045(2024)05-0395-06
作者:
郑石红1施家琦2李阳3*
(1.中国石化中科(广东)炼化有限公司,广东 湛江 524000;2.中国石油大学(北京)克拉玛依校区 工学院,新疆 克拉玛依 834000;3.中国石油大学(北京) 重质油国家重点实验室,北京 102249)
Author(s):
ZHENG Shi-hong1 SHI Jia-qi2 LI Yang3
(1.Zhongke (Guangdong) Refinery & Petrochemical Co Ltd, SINOPEC, Zhanjiang 524000, China; 2.College of Engineering, China University of Petroleum(Beijing) at Karamay, Karamay 834000,China; 3.State Key Laboratory of Heavy Oil Processing, China University of Petroleum(Beijing), Beijing 102249, China)
关键词:
电催化还原硝酸盐废水处理阴极材料
Keywords:
electrocatalytic reduction nitrate wastewater treatment cathode material
分类号:
O 645.1
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.05.0395
文献标识码:
A
摘要:
基于电催化还原硝酸盐的反应机理,从非金属电极、单金属电极、双金属电极和复合材料电极等方面综述了国内外电催化还原硝酸盐阴极材料的研究进展。指出双金属电极和复合材料电极是未来的研究重点,开发N2选择性高、稳定性强以及制备成本低的阴极材料是未来的发展方向。
Abstract:
Based on the reaction mechanism of electrocatalytic reduction of nitrate, the research progress on cathode materials for electrocatalytic reduction of nitrate was summarized with 42 references from non-metallic electrodes, single metal electrodes, bimetallic electrodes, and composite material electrodes at home and abroad. It was pointed out that bimetallic electrodes and composite material electrodes were the future research focus, and the development of cathode materials with high N2 selectivity, strong stability, and low preparation cost was the future development direction.

参考文献/References

[1] 赵婉宁, 崔纪京, 白利勇, 等. 流域水环境硝酸盐源解析方法研究进展[J]. 环境工程, 2023, 41(8): 286-294.[2] Lazaratou C V, Vayenas D V, Papoulis D. The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review[J]. Applied Clay Science, 2020, 185: 105377.[3] 吕晓书, 王霞玲, 蒋光明, 等. 纳米零价铁基材料去除水中硝酸盐污染的研究进展[J]. 材料导报, 2023, 37(4): 62-71.[4] 王颖, 辛杰, 李雪, 等. 化学催化还原地下水中硝酸盐的研究进展[J]. 水处理技术, 2010, 36(7): 14-19.[5] 孟朔, 唐良栋, 叶蕾, 等. 电催化法还原硝酸盐废水的研究进展[J]. 南京工业大学学报(自然科学版), 2023, 45(4): 368-377.[6] Su J F, Kuan W F, Liu H, et al. Mode of electrochemical deposition on the structure and morphology of bimetallic electrodes and its effect on nitrate reduction toward nitrogen selectivity[J]. Applied Catalysis B: Environmental, 2019, 257: 117909.[7] 陆晓赟, 任家丰, 孙婧, 等. 电催化还原处理硝酸盐的电极材料研究进展[J]. 南京师大学报(自然科学版), 2021, 44(2): 134-140.[8] Yao F B, Jia M C, Yang Q, et al. Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application[J]. Water Res, 2021, 193: 116881.[9] Zhang X, Wang Y T, Liu C B, et al. Recent advances in non-noble metal electrocatalysts for nitrate reduction[J]. Chemical Engineering Journal, 2021, 403: 126269.[10] Katsounaros I, Kyriacou G. Influence of nitrate concentration on its electrochemical reduction on tin cathode: Identification of reaction intermediates[J]. Electrochimica Acta, 2008, 53(17): 5477-5484.[11] Shih Y J, Wu Z L, Huang Y H, et al. Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni)[J]. Chemical Engineering Journal, 2020, 383: 123157.[12] Chaplin B P, Reinhard M, Schneider W F, et al. Critical review of Pd-based catalytic treatment of priority contaminants in water[J]. Environ Sci Technol, 2012, 46(7): 3655-3670.[13] Liu R, Zhao H C, Zhao X Y, et al. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*(ads)[J]. Environ Sci Technol, 2018, 52(17): 9992-10002.[14] Ding J, Li W, Zhao Q L, et al. Electroreduction of nitrate in water: Role of cathode and cell configuration[J]. Chemical Engineering Journal, 2015, 271: 252-259.[15] Lacasa E, Canizares P, Llanos J, et al. Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media[J]. J Hazard Mater, 2012, 213/214: 478-484.[16] Georgeaud V, Diamand A, Borrut D, et al. Electrochemical treatment of wastewater polluted by nitrate: Selective reduction to N2 on boron-doped diamond cathode[J]. Water Sci Technol, 2011, 63(2): 206-212.[17] Ghazouani M, Akrout H, Bousselmi L. Efficiency of electrochemical denitrification using electrolysis cell containing BDD electrode[J]. Desalination and Water Treatment, 2015, 53(4): 1107-1117.[18] Kuang P, Natsui K, Einaga Y. Comparison of performance between boron-doped diamond and copper electrodes for selective nitrogen gas formation by the electrochemical reduction of nitrate[J]. Chemosphere, 2018, 210: 524-530.[19] Guo S, Li H, Heck K N, et al. Gold boosts nitrate reduction and deactivation resistance to indium-promoted palladium catalysts[J]. Applied Catalysis B: Environmental, 2022, 305: 121048.[20] Liu H Z, Park J, Chen Y F, et al. Electrocatalytic nitrate reduction on oxide-derived silver with tunable selectivity to nitrite and ammonia[J]. ACS Catalysis, 2021, 11(14): 8431-8442.[21] Fajardo A S, Westerhoff P, Sanchez-Sanchez C M, et al. Earth-abundant elements a sustainable solution for electrocatalytic reduction of nitrate[J]. Applied Catalysis B: Environmental, 2021, 281: 119465.[22] Shi J L, Long C, Li A M. Selective reduction of nitrate into nitrogen using Fe-Pd bimetallic nanoparticle supported on chelating resin at near-neutral pH[J]. Chemical Engineering Journal, 2016, 286: 408-415.[23] Dortsiou M, Kyriacou G. Electrochemical reduction of nitrate on bismuth cathodes[J]. Journal of Electroanalytical Chemistry, 2009, 630(1/2): 69-74.[24] Katsounaros I, Dortsiou M, Polatides C, et al. Reaction pathways in the electrochemical reduction of nitrate on tin[J]. Electrochimica Acta, 2012, 71: 270-276.[25] Katsounaros I, Dortsiou M, Kyriacou G. Electrochemical reduction of nitrate and nitrite in simulated liquid nuclear wastes[J]. J Hazard Mater, 2009, 171(1/3): 323-327.[26] Mattarozzi L, Cattarin S, Comisso N, et al. Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes[J]. Electrochimica Acta, 2013, 89: 488-496.[27] Comisso N, Cattarin S, Fiameni S, et al. Electrodeposition of Cu-Rh alloys and their use as cathodes for nitrate reduction[J]. Electrochemistry Communications, 2012, 25: 91-93.[28] Gao W C, Gao L L, Li D, et al. Removal of nitrate from water by the electrocatalytic denitrification on the Cu-Bi electrode[J]. Journal of Electroanalytical Chemistry, 2018, 817: 202-209.[29] Amstutz V, Katsaounis A, Kapalka A, et al. Effects of carbonate on the electrolytic removal of ammonia and urea from urine with thermally prepared IrO2 electrodes[J]. Journal of Applied Electrochemistry, 2012, 42: 787-795.[30] Liu F, Li M, Wang H, et al. Fabrication and characterization of Cu/Ti bilayer nanoelectrode for electrochemical denitrification[J]. International Journal of Electrochemical Science, 2016, 11(10): 8308-8322.[31] Li M, Feng C P, Zhang Z Y, et al. Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode[J]. Electrochemistry Communications, 2009, 11(10): 1853-1856.[32] Mácová Z, Bouzek K, Serak J. Electrocatalytic activity of copper alloys for NO3- reduction in a weakly alkaline solution[J]. Journal of Applied Electrochemistry, 2007, 37: 557-566.[33] Reyter D, Bélanger D, Roué L. Elaboration of Cu-Pd films by coelectrodeposition: Application to nitrate electroreduction[J]. The Journal of Physical Chemistry C, 2008, 113(1): 290-297.[34] Zhang Q, Ding L, Cui H, et al. Electrodeposition of Cu-Pd alloys onto electrophoretic deposited carbon nanotubes for nitrate electroreduction[J]. Applied Surface Science, 2014, 308: 113-120.[35] 原晓梅, 王瑛, 徐欣, 等. Pd-Cu@UiO-66催化还原水中硝酸盐[J]. 环境工程, 2022, 40(4): 147-152.[36] 王楚淇. 铁基电催化剂的结构设计及硝酸盐还原性能研究[D].上海:东华大学, 2022.[37] 马曦, 李传浩. 二维钴基纳米片阴极电催化还原硝酸盐氮[J]. 中山大学学报(自然科学版)(中英文), 2023, 62(6): 40-49.[38] Lu J, Liu X C, Zhang H, et al. Electrocatalytic activity of nano-flowered yavapaiite anchored on magnetic graphite oxide for nitrate selective reduction[J]. Chemical Engineering Journal, 2022, 433: 134586.[39] Gao J, Jiang B, Ni C C, et al. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies[J]. Chemical Engineering Journal, 2020, 382: 123034.[40] Lu C, Lu X Y, Yang K, et al. Cu, Ni and multi-walled carbon-nanotube-modified graphite felt electrode for nitrate electroreduction in water[J]. Journal of Materials Science, 2021, 56(12): 7357-7371.[41] Wang J, Teng W, Ling L, et al. Nanodenitrification with bimetallic nanoparticles confined in N-doped mesoporous carbon[J]. Environmental Science: Nano, 2020, 7(5): 1496-1506.[42] 王畅, 刘吉明, 王永恒, 等. 改性Cu-Pd双金属电极电化学还原硝酸盐性能研究[J]. 中国环境科学, 2023, 43(10): 5196-5207.

备注/Memo

备注/Memo:
中国石油大学(北京)科学基金资助项目(项目编号:2462020 XKJS 04)
更新日期/Last Update: 2024-09-10