|本期目录/Table of Contents|

[1]刘超伟,张莉,张吉华,等.悬浮物制备介微孔分子筛复合材料及其催化性能[J].石化技术与应用,2024,6:401-407.
 LIU Chao-wei,ZHANG Li,ZHANG Ji-hua,et al.Preparation of mesoporous molecular sieve composites by suspended sludge and their catalytic performance[J].Petrochemical technology & application,2024,6:401-407.
点击复制

悬浮物制备介微孔分子筛复合材料及其催化性能(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年6期
页码:
401-407
栏目:
出版日期:
2024-11-10

文章信息/Info

Title:
Preparation of mesoporous molecular sieve composites by suspended sludge and their catalytic performance
文章编号:
1009-0045(2024)06-0401-07
作者:
刘超伟1张莉2张吉华3胡清勋2柳黄飞2方华2王久江2刘宏海2曹庚振2
1.中国石油石油化工研究院,北京 102200;2.中国石油石油化工研究院 兰州化工研究中心,甘肃 兰州 730060;3.中国石油兰州石化公司 催化剂事业部,甘肃 兰州 730060
Author(s):
LIU Chao-wei1ZHANG Li2ZHANG Ji-hua3HU Qing-xun2LIU Huang-fei2FANG Hua2WANG Jiu-jiang2LIU Hong-hai2CAO Geng-zhen2
1.Petrochemical Research Institute,PetroChina,Beijing 102200,China;2.Lanzhou Petrochemical Research Center, Petrochemical Research Institute,PetroChina,Lanzhou 730060,China;3.Catalyst Division of Lanzhou Petrochemical Company,PetroChina,Lanzhou 730060,China
关键词:
催化裂化悬浮物介微孔分子筛复合材料催化性能
Keywords:
fluid catalytic crackingsuspended sludgemesoporous molecular sieve compositescatalytic performance
分类号:
TE 624.4+1
DOI:
10.19909/j.cnki.ISSN1009-0045.2024.06.0401
文献标识码:
B
摘要:
借助X射线衍射仪、扫描电子显微镜、X射线荧光光谱仪、红外光谱仪等表征手段,对原位晶化型催化裂化催化剂晶化工序中产生的悬浮物进行了表征,并评价了其复配量(质量分数,下同)为10%~30%时的相应介微孔分子筛复合材料及其催化剂的催化反应性能。结果表明:该悬浮物为Y型分子筛、钠菱沸石及无定型硅铝物质的混合物,约含质量分数为40%的Y型分子筛,硅铝(SiO2与Al2O3)摩尔比为4.81~5.42,比表面积、孔容分别达496 m2/g和0.40 cm3/g,可作为催化裂化用介微孔分子筛复合材料。悬浮物的引入改变了Y型分子筛孔结构,使介孔孔容占比增大,结晶度保留率从66.3%提高至77.8%,结构稳定性优异。当悬浮物复配量为30% 时,介微孔分子筛复合材料的相对结晶度降低4个百分点,同时总B酸量降幅明显,其相应催化剂17 h微反活性达65%。随悬浮物复配量从10%增至30%时,液化气、汽油、柴油收率呈现波动趋势,原料油转化率从84.58%降低至83.69%,同时重油收率从5.29%提高至5.87%,综合考虑,推荐的悬浮物复配量在20%以内较佳。
Abstract:
The suspended sludge generated during the crystallization process of in-situ crystallized catalytic cracking catalysts were characterized by using the characterization methods such as X-ray diffraction, scanning electron microscopy,X-ray fluorescence spectrometer and infrared spectrometer. Then the catalitic reaction performance of the corresponding mesoporous molecular sieve composites and their catalysts were evaluated when the compounding amount(mass fraction,the same below) of suspended sludge solids mass fraction at 10%-30%. The results showed that such above suspended sludge solids was the mixture of Y zeolite,sodium rhombohedral zeolite,and amorphous silicon aluminum material. It contained about 40% Y zeolite,with the molar ratio of SiO2 to Al2O3 at 4.81-5.42,and the specific surface area and pore volume at 496 m2/g and 0.40 cm3/g,respectively. It could be used as a mesoporous molecular sieve composite material for catalytic cracking.The introduction of suspended sludge solids changed the pore structure of the Y zeolite by increasing the proportion of mesoporous volume and improving the crystallinity retention rate from 66.3% to 77.8%,and the corresponding mesoporous molecular sieve composites demonstrated the excellent structural stability.When the compounding amount of suspended sludge solids was 30%,the relative crystallinity of the mesoporous molecular sieve composites decreased by 4 percentage points and the total amount of B acid decreased significantly,and the corresponding catalyst′s 17 h micro-reaction reactivity reached 65%.As the amount of suspended sludge solids increased from 10% to 30%, the yields of liquefied gas,gasoline,and diesel showed a fluctuating trend, meanwhile,the conversion rate of raw oil decreased from 84.58% to 83.69%,the yield of heavy oil increased from 5.29% to 5.87%. All things considered,the recommended compounding amount of suspended sludge solids was better within 20%.

参考文献/References

[1] Corma A. From microporous to mesoporous molecular sieve materials and their use incatalysis[J]. Chem Rev,1997,97(6): 2373-2420.[2] Liu L P,Xiong G,Wang X S,et al. Direct synthesis of disordered micromesoporous molecular sieve[J]. Microporous Mesoporous Mater,2009,123(1/3): 221-227.[3] Fu W Q,Zhang L,Tang T D,et al. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyl dibenzothiophene over Pd supported on mesoporous zeolite Y[J]. J Am Chem Soc,2011, 133(39): 15346-15349.[4] Zhou W W,Zhou Y S,Wei Q,et al. Gallium modified HUSY zeolite as an effective co-support for NiMo hydrodesulfurization catalyst and the catalyst′s high isomerization selectivity[J]. Chemistry,2017,23(39): 9369-9382.[5] Venkatesan C,Park H,Kim J,et al. Facile synthesis of mesoporous zeolite Y using seed gel and amphiphilic organosilane[J]. Microporous Mesoporous Mater,2019,288:109579.[6] Gu F N,Wei F,Yang J Y,et al. New strategy to synthesis of hierarchical mesoporous zeolites[J].Chem Mater,2010,22(9):2442–2450.[7] Zhou W W,Zhou Y S, Wei Q, et al. Continuous synthesis of mesoporous Y zeolites from normal inorganic aluminosilicates and their high adsorption capacity for dibenzothiophene and 4,6-dimethyldibenzothiophene[J]. Chem Eng J,2017,330(15): 605-615.[8] Wang Z,Liu H H,Meng Q T,et al. Fabrication of intracrystalline mesopores within zeolite Y with greatly decreased templates[J]. RSC Adv,2017,7(16): 9605-9609.[9] 赵俊,王更更,胡 洁,等. 含介孔结构Y型分子筛的制备及其在催化裂化反应中的应用[J].石油炼制与化工,2019,50(10):46-51.[10] 陈平娥,刘洪涛.合成与表征新型介-微孔Y型分子筛 Meso- NaY[J].山西大同大学学报(自然科学版),2010,26 (2):41-42.[11] Munir D,Usman M R. Catalytic hydropyrolysis of a model municipal waste plastic mixture over composite USY/SBA-16 catalysts[J]. J Anal Appl Pyrolysis,2018,135: 44-53.[12] Zhang Y D, Liu D, Lou B, et al. Hydroisomerization of N-Decane over micro/mesoporous Pt-containing bifunctional catalysts: Effects of the MCM-41 incorporation with Y zeolite[J].Fuel,2018,226:204-212.[13] Verboekend D,Milina M, Mitchell S,et al. Hierarchical zeolites by desilication: Occurrence and catalytic impact of recrystallization and restructuring[J]. Cryst Growth Des,2013,13(11):5025-5035.[14] Verboekend D,Vile G,Pérez-Ramírez J. Mesopore formation in USY and beta zeolites by base leaching: Selection criteria and optimization of pore-directing agents[J]. Cryst Growth Des,2012,12(6): 3123-3132.[15] Chawla A,Linares N,Rimer J D,et al. Time-resolved dynamics of intracrystalline mesoporosity generation in zeolite USY[J]. Chem Mater,2019,31(14): 5005-5013.[16] Graca I,Bacarizab M C,Fernandesb A,et al. Desilicated NaY zeolites impregnated with magnesium as catalysts for glucose isomerisation into fructose[J]. Environmental,2018,224: 660-670.[17] 周健,宋健斐,时铭显,等. 焙烧过程对分子筛理化性能的影响[J].化学工程,2008,36(10): 21-24.[18] 高秀枝,张翊,徐广通,等. 超稳 Y 分子筛水热老化过程中的结构变化规律[J]. 石油学报(石油加工), 2016,32(2): 230-236.[19] 常玮.不同改性方法对Y型分子筛结构和酸性的影响[J].化工设计通讯,2018,44(3):108.[20] 王舒君,刘璞生,谢鑫,等. 柠檬酸溶液中NaY分子筛的脱铝行为[J].分子催化,2019,33(4): 363-370.[21] Feng A H,Yu Y,Mi L,et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent[J]. Microporous Mesoporous Mater,2019,280: 211-218.[22] 孙书红,黄校亮,郑云锋,等. 柠檬酸改性 Y 型分子筛的研究[J].石化技术与应用, 2018,36(2): 83-87.[23] 何丽凤,张占全,刘欣梅,等.有机-无机复合酸对超稳Y分子筛的改性研究[J]. 石油学报(石油加工), 2012,28(Z 1): 13-17.

备注/Memo

备注/Memo:
中国石油重大科技专项计划资助项目(项目编号:2016 E-0701)
更新日期/Last Update: 2024-11-10