[1]李璟,袁注升,洪慧怡,等.废稀释剂中丙二醇甲醚醋酸酯回收单元的模拟与优化[J].石化技术与应用,2025,1:52-56.
LI Jing,YUAN Zhu-sheng,HONG Hui-yi,et al.Simulation and optimization of recovery unit of propylene glycol methyl ether acetate in waste thinner[J].Petrochemical technology & application,2025,1:52-56.
点击复制
废稀释剂中丙二醇甲醚醋酸酯回收单元的模拟与优化(PDF)
《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]
- 期数:
-
2025年1期
- 页码:
-
52-56
- 栏目:
-
- 出版日期:
-
2025-01-10
文章信息/Info
- Title:
-
Simulation and optimization of recovery unit of propylene glycol methyl ether acetate in waste thinner
- 文章编号:
-
1009-0045(2025)01-0052-05
- 作者:
-
李璟1; 袁注升2; 洪慧怡2; 廖家豪1; 邓玉坤2
-
(1. TCL环保科技股份有限公司 研究院,广东 惠州 516006;2. 惠州TCL环境科技有限公司 研发技术部,广东 惠州516006)
- Author(s):
-
LI Jing1; YUAN Zhu-sheng2; HONG Hui-yi2; LIAO Jia-hao1; DENG Yu-kun2
-
(1.Research Institute,TCL Environmental Technology Co Ltd,Huizhou 516006,China;2.Research and Development Department,Huizhou TCL Environmental Technology Co Ltd,Huizhou 516006,China)
-
- 关键词:
-
废稀释剂; 丙二醇甲醚醋酸酯; 回收; 双效热耦合精馏; Aspen Plus软件; 模拟优化
- Keywords:
-
waste thinner; propylene glycol methyl ether acetate; recovery; double-effect thermally-coupled distillation; Aspen Plus software; simulation and optimization
- 分类号:
-
TQ 028.1+3;TQ 413.2
- DOI:
-
DOI:10.19909/j.cnki.ISSN1009-0045.2025.01.0052
- 文献标识码:
-
B
- 摘要:
-
利用Aspen Plus软件,采用双效热耦合精馏工艺,建立了废稀释剂中丙二醇甲醚醋酸酯(PGMEA)回收单元的模拟模型,考察了脱轻组分塔再沸器热负荷、脱重组分塔塔顶采出量和进料位置对PGMEA品质的影响,并对最佳工艺条件下的物料平衡进行了分析。结果表明:脱轻组分塔除H2O率和回流比均随脱轻组分塔再沸器热负荷的增加而增加,热负荷为1 300 MJ/h时,除H2O率为99.01%,回流比为40.08;脱重组分塔塔顶采出量为930 kg/h时,PGMEA质量分数高达99.14%,回收率为97.98%,原料中的PGMEA几乎全部被回收;脱重组分塔采用孔板波纹填料设计,从脱重组分塔第18~65层理论塔板进料时,PGMEA质量分数始终稳定在99.24%;每生产1 t PGMEA产品,双效热耦合精馏工艺的能耗为1 480 MJ,相比常规精馏回收工艺节能约25.3%。
- Abstract:
-
A simulation model of propylene glycol methyl ether acetate (PGMEA) recovery unit based on double-effect thermally-coupled distillation process in waste thinner was established by using Aspen Plus software. The effects of reboiler heat duty of light component removal column, the top withdrawal mass flow rate and feed position of heavy component removal column on the quality of PGMEA were investigated, and the material balance under the optimal process conditions was analyzed. The results showed that the water removal rate and reflux ratio of the light component removal column increased with the increase of the reboiler heat duty. When the heat duty of light component removal column was 1 300 MJ/h, the water removal rate was 99.01% and the reflux ratio was 40.08. The top withdrawal mass flow rate of heavy component removal column was 930 kg/h, the mass fraction of recovered PGMEA product was 99.14% and the recovery rate was 97.98%, almost all PGMEA in the raw materials was recovered. The heavy component removal column was designed with corrugated-plate packing, the mass fraction of recovered PGMEA product was always stable at more than 99.24% when the feed position was in the 18th to 65th theoretical trays of the column, and the energy consumption per ton of PGMEA product of the double-effect thermally-coupled distillation process was 1 480 MJ, compared with the conventional distillation process, the energy saving was about 25.3%.
参考文献/References
[1] 王恩锋, 谭文群, 龙在安.丙二醇甲醚醋酸酯的合成研究[J].精细化工中间体, 2003, 33(4):16-17.[2] Chaniago Y D, Harvianto G R, Bahadori A, et al.Enhanced recovery of PGME and PGMEA from waste photoresistor thinners by heterogeneous azeotropic dividing-wall column[J].Process Safety and Environmental Protection, 2016, 103(Part B):413-423.[3] Hussain A, Chaniago Y D, Riaz A, et al.Process design alternatives for producing ultra-high-purity electronic-grade propylene glycol monomethyl ether acetate[J].Industrial & Engineering Chemistry Research, 2019, 58(6):2246-2257.[4] 王婷婷.TFT-LCD光刻工艺有机物危害分析及控制措施研究[D].北京:首都经济贸易大学, 2017. [5] 新中天环保股份有限公司.一种从电子PGMEA废溶剂中回收PGMEA的方法:中国, 113072447 A[P]. 2021-07-06.[6] 陈广鹏.液晶用废稀释剂再生为电子级产品的工艺开发及设计[D].厦门:厦门大学, 2019.[7] Chaniago Y D, Minh L Q, Khan M S, et al.Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry[J].Energy Conversion and Management, 2015, 102(9):92-103.[8] Hsieh C T, Lee M J, Lin H M.Multiphase equilibria for mixtures containing acetic acid, water, propylene glycol monomethyl ether, and propylene glycol methyl ether acetate[J].Industrial & Engineering Chemistry Research, 2006, 45(6):2123-2130.[9] Tochigi K, Takahara H, Shiga Y, et al.Isobaric vapor–liquid equilibria for water+propylene glycol monomethyl ether (PGME), water+propyleneglycol monomethyl ether acetate (PGMEA), and PGME+PGMEA at reduced pressures[J].Fluid Phase Equilibria, 2007, 260(1):65-69.
更新日期/Last Update:
2025-01-10