|本期目录/Table of Contents|

[1]卢士海.沸腾床渣油加氢催化剂性质分析[J].石化技术与应用,2025,1:80-83.
 LU Shi-hai.Analysis of properties of ebullated bed residue hydrogenation catalyst[J].Petrochemical technology & application,2025,1:80-83.
点击复制

沸腾床渣油加氢催化剂性质分析(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2025年1期
页码:
80-83
栏目:
出版日期:
2025-01-10

文章信息/Info

Title:
Analysis of properties of ebullated bed residue hydrogenation catalyst
文章编号:
1009-0045(2025)01-0080-04
作者:
卢士海
(恒力石化(大连)炼化有限公司 检验中心,辽宁 大连 116218)
Author(s):
LU Shi-hai
(Inspection Center of Hengli Petrochemical (Dalian) Refining and Chemical Co Ltd,Dalian 116218,China)
关键词:
沸腾床渣油加氢催化剂硫碳仪微波消解ICP-OES含金属量长度分布
Keywords:
ebullated bedresidue oilhydrogenation catalystsulfur carbon analyzermicrowave digestionICP-OESmetal contentlength distribution
分类号:
TE 624.9+3
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2025.01.0080
文献标识码:
B
摘要:
采用硫碳仪、电感耦合等离子体发射光谱(ICP-OES)仪等仪器,对沸腾床渣油加氢催化剂进行了性质分析。结果表明:当利用石油醚清洗、硫碳仪测试温度为1 100 ℃,催化剂样品用量为0.05 g时,仪器能很好地检测出样品S和C质量分数;当除碳预处理的焙烧温度为800 ℃,并利用微波消解和ICP-OES法测定催化剂的含金属量时,结果重复性好,且废催化剂含Fe,Ni,V量明显高于新催化剂;利用数学分割和统计法测定催化剂长度时,结果重复性好,且相比新催化剂,废催化剂长度明显呈现变短的趋势。
Abstract:
The properties of ebullated bed residue hydrogenation catalyst were analyzed by using instruments such as sulfur carbon analyzer and inductively coupled plasma optical emission spectrometer (ICP-OES). The results showed that the mass fraction of S and C in the sample could be well detected by the instrument when the petroleum ether was used for cleaning, the test temperature of the sulfur carbon instrument was 1 100 ℃, and the amount of catalyst sample was 0.05 g. When the calcination temperature of carbon removal pretreatment was 800 ℃, and the metal content of the catalyst was determined by microwave digestion and ICP-OES method, the results were reproducible, and the amount of Fe, Ni and V in the spent catalyst was significantly higher than that of the fresh catalyst. When the length of the catalyst was determined by mathematical segmentation and statistical method, the repeatability of the results was good, and the length of the spent catalyst was significantly shorter than that of the fresh catalyst.

参考文献/References

[1] Sahu R,Song B J,Jeon Y P,et al.Upgrading of vacuum residue in batch type reactor using Ni-Mo supported on goethite catalyst[J].Journal of Industrial and Engineering Chemistry,2016,35:115-122.[2] Galiasso T R,Caprioli L.Catalyst pore plugging effects on hydrocracking reactions in an ebullated bed reactor operation[J].Catalysis Today,2005,109(1/2/3/4):185-194. [3] Morel F,Kressmann S,Harlé V,et al.Processes and catalysts for hydrocracking of heavy oil and residues[J]. Studies in Surface Science and Catalysis,1997,106:1-16.[4] Casta?觡eda L C,Mu?觡oz J A D,Ancheyta J.Current situation of emerging technologies for upgrading of heavy oils[J].Catalysis Today,2014,220/221/222:248-273.[5] Umana B,Zhang N,Smith R.Development of vacuum residue hydrodesulphurization -hydrocracking models and their integration with refinery hydrogen networks[J].Industrial & Engineering Chemistry Research,2016,55(8):2391-2406.[6] Kim S H,Kim K D,Lee Y K.Effects of dispersed MoS2 catalysts and reaction conditions on slurry phase hydrocracking of vacuum residue[J].Journal of Catalysis,2017,347:127-137.[7] Marafi A,Albazzaz H,Rana M S.Hydroprocessing of heavy residual oil:Opportunities and challenges[J]. Catalysis Today,2019,329:125-134.[8] 陈程,曹晓娜,徐广通,等.渣油加氢失活催化剂的积炭规律[J].石油学报(石油加工),2016,32(6):1221-1227.[9] 宋宇,辛靖,尉琳琳,等.工业渣油加氢失活催化剂上沉积金属及积炭研究[J].石油炼制与化工,2021,52(4):33-43.[10] 王喜彬,贾丽,刘建锟,等.沸腾床渣油加氢影响因素及催化剂失活分析[J].炼油技术与工程,2012,42(8):42-45.[11] 朱慧红,茆志伟,杨涛,等.催化剂形貌对沸腾床渣油加氢Ni-Mo/Al2O3催化剂活性位的影响机制[J].化工学报,2021,72(4):2076-2085.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2025-01-10