|本期目录/Table of Contents|

[1]王尚芝,丁家正,马海润,等.电化学水处理技术在硝基苯废水中的应用[J].石化技术与应用,2025,2:168-173.
 WANG Shang-zhi,DING Jia-zheng,MA Hai-run,et al.Application of electrochemical water treatment technology in nitrobenzene wastewater[J].Petrochemical technology & application,2025,2:168-173.
点击复制

电化学水处理技术在硝基苯废水中的应用(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2025年2期
页码:
168-173
栏目:
出版日期:
2025-03-10

文章信息/Info

Title:
Application of electrochemical water treatment technology in nitrobenzene wastewater
文章编号:
1009-0045(2025)02-0168-06
作者:
王尚芝1丁家正2马海润2李阳3*
(1.中国石化中科(广东)炼化有限公司,广东 湛江524000;2.中国石油大学(北京) 重质油国家重点实验室,北京102249;3.中国石化江汉石油工程设计有限公司,湖北 武汉 430223)
Author(s):
WANG Shang-zhi1 DING Jia-zheng2 MA Hai-run2 LI Yang3
(1.Zhongke (Guangdong) Refinery & Petrochemical Co Ltd, SINOPEC, Zhanjiang 524000, China;2. State Key Laboratory of Heavy Oil Processing, China University of Petroleum(Beijing), Beijing 102249, China;3. Petroleum Engineering Jianghan Co Ltd, SINOPEC,Wuhan 430223, China)
关键词:
电化学技术水处理硝基苯氧化还原协同作用
Keywords:
electrochemical technology water treatment nitrobenzene redox synergistic effect
分类号:
TQ 085
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2025.02.0168
文献标识码:
A
摘要:
介绍了电化学水处理技术作用原理,并对近年来电化学氧化、还原以及氧化还原技术处理硝基苯废水的研究现状进行综述。指出未来电化学水处理技术需要重点关注电极材料改性与反应器构型优化,此外,将电化学技术与其他水处理技术联用也是一个重要的发展方向。
Abstract:
The principle of electrochemical water treatment technology was introduced,and the recent research on electrochemical oxidation, reduction, and redox technology in the treatment of nitrobenzene wastewater was reviewed. It was pointed out that in the future, electrode material modification and reactor configuration optimization should be advance in electrochemical water treatment technology. Furthermore, the combination of electrochemical technology with other water treatment technologies was an important direction for future development.

参考文献/References

[1] 李章良, 崔芳芳, 杨茜麟. 含硝基苯废水处理技术的研究进展[J]. 环境工程, 2015, 33(4): 4-8.[2] Wang H, Zhang L, Tian Y, et al. Performance of nitrobenzene and its intermediate aniline removal by constructed wetlands coupled with the micro-electric field[J]. Chemosphere, 2021, 264(1): 128456.[3] Han Y H, Qi M M, Zhang L, et al. Degradation of nitrobenzene by synchronistic oxidation and reduction in an internal circulation microelectrolysis reactor[J]. Journal of Hazardous Materials, 2019, 365(5): 448-456.[4] Martines H C A, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review[J]. Applied Catalysis B( Environmental), 2009, 87(3/4): 105-145.[5] 张瑞, 赵霞, 李庆维, 等. 电化学水处理技术的研究及应用进展[J]. 水处理技术, 2019, 45(4): 11-16.[6] Krystynik P, Kluson P, Tito D N. Water treatment process intensification by combination of electrochemical and photochemical methods[J]. Chemical Engineering and Processing(Process Intensification), 2015, 94: 85-92.[7] 张洋, 王宝山, 许亚兵, 等. 电絮凝-气浮法处理高浓度硝基苯废水[J]. 工业水处理, 2023, 43(10): 79-87.[8] 董旭明, 张胜寒, 狄杰, 等. 电吸附电极材料的研究进展[J]. 工业水处理, 2022, 42(1): 48-55.[9] Mohammadi R, Tang W, Sillanp?覿?覿 M. A systematic review and statistical analysis of nutrient recovery from municipal wastewater by electrodialysis[J]. Desalination, 2021, 498(15): 114626.[10] 王一雯, 姜钦亮, 李建新, 等. 电渗析集成技术在高盐废水处理中的应用研究进展[J]. 水处理技术, 2023, 49(12): 22-28.[11] Isaev A B, Shabanov N S, Magomedova A G, et al. Electrochemical oxidation of azo dyes in water: A review[J]. Environmental Chemistry Letters ,2023, 21(5): 2863-2911.[12] Moreira F C, Boaventura R A R, Brillas E, et al. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters[J]. Applied Catalysis B(Environmental), 2017, 202: 217-261.[13] Liu C, Zhang A Y, Pei D N, et al. Efficient electrochemical reduction of nitrobenzene by defectengineered TiO2-x single crystals[J]. Environmental Science & Technology ,2016, 50(10): 5234-5242.[14] 刘屹, 刘昊, 张美秀, 等. 碳纳米管修饰石墨电极处理硝基苯废水[J]. 科学技术与工程, 2014, 14(18): 140-142.[15] 严世胜, 彭鸿雁, 赵志斌, 等. 掺氮金刚石电极性能及其氧化降解硝基苯研究[J]. 无机材料学报, 2018, 33(5): 565-569.[16] Chen Y, Li H Y, Liu W J, et al. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode[J]. Chemosphere, 2014, 113: 48-55.[17] Chen S X, He P, Wang X J, et al. Co/Sm-modified Ti/PbO2 anode for atrazine degradation: Effective electrocatalytic performance and degradation mechanism[J]. Chemosphere, 2021, 268: 128799.[18] 李阳, 王文虎, 赵姗姗, 等. 钛基锡锑氧化物涂层电极制备及其在化工废水处理中的应用[J]. 现代化工,2022, 42(5): 59-62.[19] 秦娜娜, 查磊, 李磊磊, 等. 外电流直接电解法处理硝基苯废水的研究[J]. 水处理技术, 2010, 36(12): 117-121.[20] Liu D Y, Liao Z J, Hu Z Y, et al. Electrochemical degradation of nitrobenzene wastewater: From laboratory experiments to pilot-scale industrial application[J]. Catalysts, 2022, 12(2): 190.[21] Duan X Y, Xu F D, Wang Y N, et al. Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution[J]. Electrochimica Acta, 2018, 282(20): 662-671.[22] Xia K Y, Xie F C, Ma Y. Degradation of nitrobenzene in aqueous solution by dual-pulse ultrasound enhanced electrochemical process[J]. Ultrasonics Sonochemistry, 2014, 21(2): 549-553.[23] 刘淼, 冷粟, 陈嵩岳, 等. 改性Ti/SnO2-Sb电极降解硝基苯废水[J]. 高等学校化学学报, 2013, 34(8): 1899-1906.[24] Li Y, Ma H R, Xie W Y, et al. Exploring well-defined TiO2 nanotube arrays for enhancing SnO2-Sb-Nd-Pt electrode performance[J]. Journal of Electroanalytical Chemistry, 2024, 967(15): 118447.[25] Qin T, Yao B, Zhou Y Y, et al. The three-dimensional electrochemical processes for water and wastewater remediations: Mechanisms, affecting parameters, and applications[J]. Journal of Cleaner Production, 2023, 408: 137105.[26] 程佳鑫, 李荣兴, 杨海涛, 等. 三维电催化氧化处理难生化降解有机废水研究进展[J]. 环境化学, 2022, 41(1): 288-304.[27] 肖智, 陆雪梅, 徐炎华. 复极性三维电极法处理硝基苯废水的实验研究[J]. 环境工程学报, 2011, 5(12): 2647-2650.[28] 王世真. 电化学法处理硝基苯废水的研究[J]. 中国新技术新产品, 2020, 3(5): 134-136.[29] Wang T, Song Y Q, Ding H J, et al. Insight into synergies between ozone and in-situ regenerated granular activated carbon particle electrodes in a three-dimensional electrochemical reactor for highly efficient nitrobenzene degradation[J]. Chemical Engineering Journal, 2020, 394(15): 124852.[30] 刘家满, 葛红花, 于华强, 等. 电芬顿技术处理染料废水研究进展[J]. 应用化工, 2022, 51(11): 3348-3353.[31] Jiang J, Li G H, Li Z T, et al. An Fe-Mn binary oxide (FMBO) modified electrode for effective electrochemical advanced oxidation at neutral pH[J]. Electrochimica Acta, 2016, 194(10): 104-109.[32] Santana-martínez G, Roa-morales G, Campo E M D, et al. Electro-Fenton and Electro-Fenton-like with in situ electrogeneration of H2O2 and catalyst applied to 4-chlorophenol mineralization[J]. Electrochimica Acta, 2016, 195(20): 246-256.[33] Wang Y T, Zhang G, Xue Y D, et al. In situ anodic induction of low-valence copper in electro-Fenton system for effective nitrobenzene degradation[J]. Environmental Science and Pollution Research, 2019, 26: 32165-32174.[34] Zhang Y M, Chen Z, Wu P P, et al. Three-dimensional heterogeneous Electro-Fenton system with a novel catalytic particle electrode for Bisphenol A removal[J]. Journal of Hazardous Materials, 2020, 393(5): 120448.[35] 满心祁. 三维电极-电Fenton处理硝基苯废水电极材料与影响因素研究[J]. 供水技术, 2018, 12(6): 26-29.[36] 肖凯军, 王新, 银玉容. 三维电极-电Fenton耦合法降解硝基苯废水[J]. 华南理工大学学报(自然科学版), 2010, 38(8): 131-136.[37] Yu H Q, Huang C C, Zhang Y, et al. Well-aligned TiO2 fibers and N-doped TiO2 fibers for efficient photocatalytic degradation of nitrobenzene in wastewater[J]. Journal of Materials Science(Materials in Electronics), 2022, 33: 4145-4155.[38] 李君敬, 种雨彤, 唐李文, 等. 电催化还原脱氯法处理氯代有机废水研究进展[J]. 给水排水, 2021, 47(12): 158-167.[39] 蒋成杰, 李小露, 朱兆连, 等. 介孔碳修饰石墨电极处理模拟硝基苯废水[J]. 化工环保, 2018, 38(3): 288-293.[40] Ahmadi A, Wu T T. Electrocatalytic reduction of nitrobenzene using TiO2 nanotube electrodes with different morphologies: Kinetics, mechanism, and degradation pathways[J]. Chemical Engineering Journal, 2019, 374(15): 1241-1252.[41] Liu Q, Bai X Q, Su X T, et al. The promotion effect of biochar on electrochemical degradation of nitrobenzene[J]. Journal of Cleaner Production, 2020, 244: 118890.[42] Li Y P, Cao H B, Liu C M, et al. Electrochemical reduction of nitrobenzene at carbon nanotube electrode[J]. Journal of Hazardous Materials, 2007, 148(1/2): 158-163.[43] 袁孟孟, 徐浩, 延卫. 有机物电化学氧化反应器的研究进展[J]. 环境工程, 2018, 36(7): 1-5.[44] 崔丹. 升流式生物电化学反应器还原废水中硝基苯的效果研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.[45] 季兵, 朱兆连, 陈慧, 等. 动态电化学反应器还原硝基苯废水的效能分析[J]. 环境工程学报, 2017, 11(1): 121-126.[46] 付丽霞, 韩德宝, 郝彦龙, 等. 改进型铁碳微电解设备预处理硝基苯废水[J]. 环境工程, 2019, 37(8): 47-50.[47] 施维. 改性二氧化铅电极的制备及其处理硝基苯废水的研究[D]. 南京: 南京理工大学, 2013.[48] Yu J, Zhu Z P, Hu W W, et al. Research on the electrochemical treatment of nitrobenzene wastewater: The effects of process parameters and the mechanism of distinct degradation pathways[J]. Chemosphere, 2023, 338: 139408.[49] Li Y, Ma H R, Li Q W, et al. One-step synthesis of Pt-Nd co-doped Ti/SnO2-Sb nanosphere electrodes used to degrade nitrobenzene[J]. Environmental Science and Pollution Research, 2024, 31: 4528-4538.

备注/Memo

备注/Memo:
中国石油大学(北京)科学基金项目(项目编号:2462020 XKJS 04)
更新日期/Last Update: 2025-03-10