|本期目录/Table of Contents|

[1]李雪雨,周宇晨,邓清晨,等.导电水凝胶的制备与性能[J].石化技术与应用,2022,2:89-93.
 LI Xue-yu,ZHOU Yu-chen,DENG Qing-chen,et al.Preparation and performance of conductive hydrogel[J].Petrochemical technology & application,2022,2:89-93.
点击复制

导电水凝胶的制备与性能(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2022年2期
页码:
89-93
栏目:
出版日期:
2022-03-10

文章信息/Info

Title:
Preparation and performance of conductive hydrogel
作者:
李雪雨周宇晨邓清晨程雅淇贾红兵*
南京理工大学 软化学与功能材料教育部重点实验室,江苏 南京 210094
Author(s):
LI Xue-yuZHOU Yu-chenDENG Qing-chenCHENG Ya-qiJIA Hong-bing
Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
聚乙烯醇丙烯酰胺丙烯酸导电水凝胶抗冻性保水性传感器
Keywords:
polyvinyl alcoholacrylamideacrylic acidconductive hydrogelfrost resistancewater retentionsensor
分类号:
TQ 325.9
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2022.02.0089
文献标识码:
B
摘要:
以聚乙烯醇(PVA)、丙烯酰胺(AM)和丙烯酸(AAc)为原料,过硫酸铵(APS)为引发剂,FeCl3为交联剂,甘油(Gly)为抗冻剂,水为溶剂,采用自由基聚合和冻融循环法制备了PVA-P(AM-AAc)-Fe3+-Gly导电水凝胶(以下简称PAFG)。结果表明:当Gly质量分数为50%时,PAFG的拉伸强度为409 kPa,断裂伸长率为934%,结冰温度低至-42 ℃,贮存6 d后的质量保持率为90.3%;由此制备的PAFG传感器的电导率为0.38 S/m,应变灵敏度为3.13,循环稳定性、重复使用性和耐用性最佳。
Abstract:
PVA-P(AM-AAc)-Fe3+-Gly conductive hydrogel(PAFG) was prepared by free radical polymerization and freeze-thaw cycle method with polyvinyl alcohol(PVA),acrylamide(AM) and acrylic acid(AAc) as raw materials,ammonium persulfate(APS) as initiator,FeCl3 as crosslinking agent,glycerin(Gly) as antifreeze and water as solvent. The results showed that when the mass fraction of Gly was 50%,the tensile strength of PAFG was 409 kPa,the elongation at break was 934%,the freezing temperature was as low as -42 ℃,and the mass retention rate for 6 d was 90.3%;the conductivity of the prepared PAFG sensor was 0.38 S/m,the strain sensitivity was 3.13,and the cycle stability,reusability and durability were the best.

参考文献/References

[1] Sun X,Yao F L,Wang C Y,et al. Ionically conductive hydrogel with fast self-recovery and low residual strain as strain and pressure sensors [J]. Macromolecular Rapid Communications,2020,41(13): 2000185.
[2] Gao Y F,Peng J B,Zhou M H,et al. A multi-model,large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring [J]. Journal of Materials Chemistry B,2020,8(48): 11010-11020.
[3] Rong Q F,Lei W W,Huang J,et al. Low temperature tolerant organohydrogels electrolytes for flexible solid‐state supercapacitors[J]. Advanced Energy Materials,2018,31(8): 1801967. [4] Morelle X P,Illeperuma W R,Tian K,et al. Highly stretchable and tough hydrogels below water freezing temperature [J]. Advanced Materials,2018,30(35): 1801541.
[5] Liu Z Z,Liu J,Zhang J M,et al. Highly compressible hydrogel sensors with synergistic long-lasting moisture,extreme temperature tolerance and strain-sensitivity properties [J]. Materials Chemistry Frontiers,2020,4(11): 3319-3327.
[6] Rong Q F,Lei W W,Chen L,et al. Anti-freezing,conductive self‐healing organohydrogels with stable strain-sensitivity at subzero temperatures [J]. Angew Chem Int Ed Engl,2017,56(45): 14159-14163.
[7] Hu C X,Zhang Y L,Wang X D,et al. Stable,strain-sensitive conductive hydrogel with antifreezing capability,remoldability,and reusability[J]. ACS Applied Materials & Interfaces,2018,10(50): 44000-44010.
[8] Zhang W,Wen J Y,Ma M G,et al. Anti-freezing,water-retaining,conductive,and strain-sensitive hemicellulose/polypyrrole composite hydrogels for flexible sensors [J]. Journal of Materials Research and Technology,2021(14):555-566.
[9] Hu J Q,Wu Y L,Yang Q,et al. One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring [J]. Carbohydrate Polymers,2022(275): 118697.
[10] Wang J,Lin Y K,Mohamed A,et al. High strength and flexible aramid nanofiber conductive hydrogels for wearable strain sensors [J]. Journal of Materials Chemistry C,2021,9(2): 575-583.
[11] Wang C Y,Xia K L,Wang H M,et al. Advanced carbon for flexible and wearable electronics [J]. Advanced Materials,2019,31(9): 1801072.
[12] Sun F C,Huang X Y,Wang X,et al. Highly transparent,adhesive,stretchable and conductive PEDOT: PSS/polyacrylamide hydrogels for flexible strain sensors [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021(625): 126897.
[13] Li X F,Wang H,Li D P,et al. Dual ionically cross-linked double-network hydrogels with high strength,toughness,swelling resistance,and improved 3D printing processability [J]. ACS Applied Materials & Interfaces,2018,10(37): 31198-31207.
[14] Elliott G D,Wang S,Fuller B J. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures [J]. Cryobiology,2017(76): 74-91.
[15] Bai Y Y,Chen B H,Xiang F,et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt [J]. Applied Physics Letters,2014,105(15): 151903.
[16] Peng Y J,Yan B,Li Y S,et al. Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor [J]. Journal of Materials Science,2020,55(3): 1280-1291.
[17] Rong Q F,Lei W W,Liu M J. Conductive hydrogels as smart materials for flexible electronic devices [J]. Chemistry - A European Journal,2018,24(64): 16930-16943.
[18] Liu H Y,Wang X,Cao Y X,et al. Freezing-tolerant,highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links [J]. ACS Applied Materials And Interfaces,2020,12(22): 25334-25344.
[19] Fan L,Xie L,Zheng Y P,et al. Antibacterial,self-adhesive,recyclable,and tough conductive composite hydrogels for ultrasensitive strain sensing [J]. ACS Applied Materials & Interfaces,2020,12(19): 22225-22236.
[20] Jin R N,Xu J J,Duan L J,et al. Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring [J]. Carbohydrate Polymers,2021(268): 118240.
[21] Xia S,Song S X,Jia F,et al. A flexible,adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring [J]. Journal of Materials Chemistry B,2019,7(30): 4638-4648.

备注/Memo

备注/Memo:
中国航空科学基金资助项目(项目编号:2016 ZF 59009)
更新日期/Last Update: 2022-03-10