|本期目录/Table of Contents|

[1]贾海龙,王园园,马杰,等.中型炼油厂碳排放评估与碳减排措施[J].石化技术与应用,2022,2:139-143.
 JIA Hai-long,WANG Yuan-yuan,MA Jie,et al.Carbon emission assessment and carbon reduction measures formedium-sized refinery[J].Petrochemical technology & application,2022,2:139-143.
点击复制

中型炼油厂碳排放评估与碳减排措施(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2022年2期
页码:
139-143
栏目:
出版日期:
2022-03-10

文章信息/Info

Title:
Carbon emission assessment and carbon reduction measures formedium-sized refinery
作者:
贾海龙1王园园2马杰2常鑫1杨晓航12郭忠森12*
1.盘锦浩业化工有限公司,辽宁 盘锦 124124;2.大连理工大学盘锦产业技术研究院 浩业分院,辽宁 盘锦 124221
Author(s):
JIA Hai-long1WANG Yuan-yuan2MA Jie2CHANG Xin1YANG Xiao-hang12GUO Zhong-sen12
1.Panjin Haoye Chemical Co Ltd,Panjin 124124,China;2.Haoye Branch,DUT-Panjin Industrial Technology Institute,Panjin 124221,China
关键词:
碳排放碳中和碳减排碳捕集制氢装置电力蒸汽
Keywords:
carbon emissioncarbon neutralcarbon reductioncarbon capturehydrogen production unitpowersteam
分类号:
TE 08
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2022.02.0139
文献标识码:
B
摘要:
针对某中型炼油厂,依照SH/T 5000—2011和SH/T 3110—2001核算其碳排放量,考察了不同生产工艺和不同碳捕集技术对碳减排的作用效果。结果表明:该炼油厂碳排放量列前3位的装置依次为煤制氢装置、催化裂化装置和延迟焦化装置,占比分别为21.37%,16.00%,11.96%;制氢装置的主要碳排放源为工艺排放CO2,约占装置总排放量的95.0%以上,采用膜法回收制氢解吸气中H2与CO2的耦合工艺,可实现直接碳排放减排量为152.86 kmol/h,回收CO2为5 380 t/a;通过减少以电力和蒸汽为主的公用工程消耗,可降低CO2的间接排放;新型悬浮床渣油加氢工艺装置较传统焦化装置具有显著降低碳排放的作用。
Abstract:
Based on SH/T 5000—2011 and SH/T 3110—2001,the carbon emission of a medium-sized refinery was calculated,and the effects of different production processes and carbon capture technologies on carbon emission reduction were investigated. The results showed that the top 3 units of carbon emission were coal hydrogen production unit,catalytic cracking unit and delayed coking unit,accounting for 21.37%,16.00% and 11.96% respectively. The main carbon emission source of hydrogen production unit was process CO2,accounting for more than 95.0% of the total emissions of the unit. The direct carbon emission reduction of 152.86 kmol/h and CO2 recovery of 5 380 t/a could be achieved by using the coupling process of hydrogen and CO2 in the dehydrosuction of hydrogen production by membrane method. It could be reducing indirect CO2 emissions by reducing utility consumption represented by electricity and steam. Compared with the traditional coking unit,the new process represented by the suspended bed residue hydrogenation unit could be reducing carbon emissions significantly.

参考文献/References

[1] 张引弟,胡多多,刘畅,等. 石油石化行业CO2捕集、利用和封存技术的研究进展[J]. 油气储运,2017,36(6):636-645.
[2] 王文涛,刘燕华,于宏源. 全球气候变化与能源安全的地缘政治[J]. 地理学报,2014,69(9):1259-1267.
[3] 张雅欣,罗荟霖,王灿. 碳中和行动的国际趋势分析[J]. 气候变化研究进展,20201,17(1): 88-97.
[4] 中国石油和化学工业联合会. 中国石化市场预警报告[M]. 北京:化学工业出版社,2020: 11-18.
[5] 乞孟迪,张硕,柯晓明,等. 我国炼油工业"十三五"回顾与"十四五"发展趋势展望[J]. 当代石油石化, 2021, 29(3):12-20.
[6] 乞孟迪,柯晓明,张硕,等. 格局重构,转型发展中的中国炼油[J]. 当代石油石化,2020,28(3):14-38.
[7] 贾海龙,王树国.低温热回收再利用系统:中国,201620549419.7[P].2016-06-08.
[8] 陈杰,唐建峰,金新明,等. 醇胺法脱碳工艺参数中试实验与模拟优化[J]. 石油学报(石油加工),2017,33(5):966-974.
[9] 张亚萍,刘建周,季芹芹,等. 醇胺法捕集燃煤烟气CO2工艺模拟及优化[J]. 化工进展,2013,32(4): 930-935.
[10] Younas M,Rezakazemi M,Daud M,et al. Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs)[J]. Progress in Energy and Combustion Science,2020,80:100849.
[11] 简相坤,刘石彩,边轶. 活性炭对CO2的吸附与解吸研究进展[J]. 生物质化学工程,2012,46(3):20-26.
[12] 马宇彤,胡云峰,刘宏鹏. 吸附分离天然气中二氧化碳的分子筛研究进展[J]. 精细石油化工,2018,35(2):74-78.
[13] 陈兵,肖红亮,王香增. 气体杂质对管道输送CO2相态的影响[J]. 天然气化工(C 1化学与化工),2017,42(6):89-94.
[14] Xiao W,Gao P,Dai Y,et al. Efficiency separation process of H2/CO2/CH4 mixtures by a hollow fiber dual membrane separator[J]. Processes,2020,8(5):560.
[15] 周超强,许丹,张宏利. 膜回收及吸收组合工艺回收干气中液化气组分[J]. 当代化工,2020,49(8):190-194.
[16] 邹雪娜,褚立强,徐徜徉. CO2/CH4分离膜技术在沼气提纯中的应用研究进展[J]. 膜科学与技术,2014,34(5):125-132.
[17] 杨晓航,郭明钢,代岩,等.净化瓦斯气中氢气和轻烃回收工艺模拟与优化[J]. 现代化工,2021,41(2):235-240.
[18] 庞洪涛. 6 FDA型聚酰亚胺膜材料的合成及其气体渗透性能研究[D]. 南京:南京理工大学,2004.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2022-03-10