|本期目录/Table of Contents|

[1]李帅,黄思赟*.MOFs基氮自掺杂多孔炭的可控制备及其电化学性能[J].石化技术与应用,2022,3:153-159.
 LI Shuai,HUANG Si-Yun.Controllable preparation and electrochemical performance of MOFs-based nitrogen self-doped porous carbon[J].Petrochemical technology & application,2022,3:153-159.
点击复制

MOFs基氮自掺杂多孔炭的可控制备及其电化学性能(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2022年3期
页码:
153-159
栏目:
出版日期:
2022-05-10

文章信息/Info

Title:
Controllable preparation and electrochemical performance of MOFs-based nitrogen self-doped porous carbon
文章编号:
1009-0045(2022)03-0153-07
作者:
李帅黄思赟*
贵州应用技术职业学院 化学工程系,贵州 福泉 550500
Author(s):
LI ShuaiHUANG Si-Yun
Department of Chemical Engineering,Guizhou Vocational Institute of Applied Technology, Fuquan 550500, China
关键词:
超级电容器金属有机框架化合物 一步碳化法氮自掺杂多孔炭电化学性能
Keywords:
super capacitor metal organic framework compounds one-step carbonization method nitrogen self-doped porous carbon electrochemical performance
分类号:
O 646;TM 53
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2022.02.0078
文献标识码:
B
摘要:
为开发高性能超级电容器电极材料,以溶剂热法合成无色金属有机框架化合物(MOFs)材料[Zn2(C8H4O4)2(C6H12N2)]·4 DMF·0.5 H2O(简称ZDP)作为炭前驱体,采用一步碳化法制备无定型结构氮自掺杂多孔炭 (ZDPC-750),并使用X射线衍射分析、拉曼光谱分析、扫描电子显微镜、透射电子显微镜、氮气吸附、X 射线光电子能谱对ZDPC-750试样进行表征;选用浓度为6 mol/ L的KOH溶液为电解液,通过恒电流充放电(GCD)、循环伏安(CV)、电化学阻抗谱( EIS )等方法测定ZDPC-750电极试样的电化学性能。结果表明: ZDPC-750呈包含微孔、介孔和大孔的分级结构,比表面积(BET法)高达1 228 m2/g,平均孔径为3.53 nm;当电流密度为1.0 A/g时,ZDPC-750电极的比电容高达175 F/g;当电流密度从1.0 A/g 增加到10.0 A/g 时,电容保持率为80.4%;即使在1 A/g下GCD循环5 000次,电容保持率仍然高达94.74%。
Abstract:
In order to develop high-performance supercapacitor electrode materials, the colorless metal organic framework compounds(MOFs) material[Zn2(C8H4O4)2(C6H12N2)]·4DMF·0.5H2O (referred to as ZDP) was synthesized by the solvothermal method as carbon precursor, and the one-step carbonization method was adopted to prepare the amorphous nitrogen self-doped porous carbon ZDPC-750. Then the ZDPC-750 samples were characterized by X-ray diffraction analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption, and X-ray photoelectron spectroscopy. And the electrochemical properties of ZDPC-750 electrode samples were determined by galvanostatic charge-discharge(GCD), cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS) methods with the concentration of 6 mol/L KOH solution as electrolyte. The results showed that the ZDPC-750 had a hierarchical structure including micropores, mesopores and macropores, and its BET specific surface area was up to 1 228 m2/g, and the average pore size was 3.53 nm. Moreover, when the current density was 1.0 A/g, the specific capacitance of the ZDPC-750 electrode sample was up to 175 F/g. When the current density increased from 1.0 A/g to 10.0 A/g, its capacitance retention rate was 80.4%. Even if GCD was cycled 5 000 times at 1 A/g,its capacitance retention rate was still as high as 94.74%.

参考文献/References

[1] Mielniczek M, Janicka E, Gawel L, et al. Evaluation of temperature influence on electrochemical processes occurring in a lithium-ion supercapacitor with the use of dynamic electro-chemical impedance spectroscopy[J]. Energies, 2021, 14(13): 3807-3819.[2] Su F, Qin J, Das P, et al. A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes[J]. Energy & Environmental Science, 2021, 14(4): 2269-2277.[3] Ahmed R, Nabi G. Enhanced electrochemical performance of Cr-doped NiO nanorods for supercapacitor application[J]. The Journal of Energy Storage, 2021, 33(40):102115-102123.[4] Duffner F, Kronemeyer N, J Tübke, et al. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure[J]. Nature Energy, 2021,6(2): 123-134.[5] Yuan Q, Ma M G. Conductive polypyrrole incorporated nanocellulose/MoS2 film for preparing flexible supercapacitor electrodes[J]. Frontiers of Materials Science,2021, 15(2) :227–240.[6] Ji H H, Shin K H, Yun J L. Scalable binder-free freestanding electrodes based on a cellulose acetate-assisted carbon nanotube fibrous network for practical flexible Li-ion batteries[J]. ACS Applied Materials and Interfaces, 2021, 13(5):6375-6384.[7] Ates M , Yuruk Y. Facile preparation of reduced graphene oxide, polypyrrole, carbon black, and polyvinyl alcohol nanocomposite by electrospinning: A low-cost and sustainable approach for supercapacitor application[J]. Ionics, 2021, 27(6):2659-2672.[8] Bonakdar M, Hosseini S R, Ghasemi S. Poly(o-Anisidine)/carbon nanotubes/graphene nanocomposite as a novel and cost-effective supercapacitor material[J]. Materials Science and Engineering B, 2021, 267(2):115099-115107.[9] Sufiani O, Tanaka H, Teshima K, et al. Enhanced electrosorption capacity of activated carbon electrodes for deionized water production through capacitive deionization[J]. Separation and Purification Technology, 2020, 247(3):116998-117008.[10] Wang F, Cheong J Y, He Q, et al. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors[J]. Chemical Engineering Journal, 2021, 414(18):128767-128778.[11] Giliopoulos D, Zamboulis A, Giannakoudakis D A, et al. Polymer/metal organic framework(MOF) nanocomposites for biomedical applications[J]. Molecules, 2020, 25(1):185-213.[12] Taylor-Pashow K , Rocca J D , Xie Z , et al. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery.[J]. Journal of the American Chemical Society, 2009, 131(40):14261-14263.[13] Tella A C, Bamgbose J T, Adimula V O, et al. Synthesis of metal–organic frameworks (MOFs) MIL-100(Fe) functionalized with thioglycolic acid and ethylenediamine for removal of eosin B dye from aqueous solution[J]. SN Applied Sciences, 2021, 3(1): 136-141.[14] Nabipour H, Wang X, Song L, et al. Metal-organic frameworks for flame retardant polymers application: A critical review[J]. Composites Part A(Applied Science and Manufacturing), 2020, 139(18):106113-106123.[15] Sun D, Kim D P. Hydrophobic MOFs@Metal Nanoparticles@COFs for interfacially confined photocatalysis with high efficiency[J]. ACS Applied Materials and Interfaces, 2020, 12(18):20589-20595.[16] Liang S, Ge F Y, Ren S S, et al. Molecular engineering in a family of pillared-layered metal organic frameworks for tuning gas adsorption behavior[J]. Dalton Transactions, 2021, 50(21): 7409–7416.[17] Chaikittisilp W , Hu M , Wang H , et al. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes[J]. Chemical Communications, 2012, 48(58):7259-7261.[18] Zhang Y, Lin B, Sun Y, et al. Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. RSC Advances, 2015, 5(72):58100-58106.[19] Wang A , Chen X , Yu G , et al. Carbon-coated ZnS composites for lithium-ion battery anode materials[J]. Ionics, 2021, 27(3):1-10.[20] Pang H, Wang X, Zhang G, et al. Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy[J]. Applied Surface Science, 2010, 256(21):6403-6407.[21] Li L, Li Z, Zhou Q, et al. Cold atmospheric plasma jet applied for TiO2/carbon fiber composite biomaterial[J]. Laser and Particle Beams, 2020, 38(4):269-276.[22] Roy D , Kanojia S , Mukhopadhyay K , et al. Analysis of carbon-based nanomaterials using Raman spectroscopy: Principles and case studies[J]. Bulletin of Materials Science, 2021, 44(1):31-40.[23] Zou J, Fan C, Liu X. Effects of molecular cross-sectional areas of adsorbed nitrogen on the Brunauer–Emmett–Teller analysis for carbon-based slit pores[J]. Langmuir, 2020, 36(48):14656-14665.[24] Maleki M, El-Nagar G A, Bernsmeier D, et al. Fabrication of an efficient vanadium redox flow battery electrode using a free-standing carbon-loaded electrospun nanofibrous composite[J]. Scientific Reports, 2020, 10(1):11153-11167.[25] Guo X, Zhang G, Wu C, et al. A cost-effective synthesis of heteroatom-doped porous carbon by sulfur-containing waste liquid treatment: As a promising adsorbent for CO2 capture[J]. Journal of Environmental Chemical Engineering, 2021, 9(20):105165-105176.[26] Peng L, Peng Y, Primo A, et al. Porous graphitic carbons containing nitrogen by structuration of chitosan with pluronic P123[J]. ACS Applied Materials and Interfaces, 2021, 13(11):13499-13507.[27] Zhidkov I S, Kurmaev E Z, Cholakh S O, et al. XPS study of interactions between linear carbon chains and colloidal Au nanoparticles[J]. Mendeleev Communications, 2020, 30(3):285-287.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2022-05-10