|本期目录/Table of Contents|

[1]代恩东,刘亭亭,毛玲娟,等.半再生重整装置流程模拟及运行优化[J].石化技术与应用,2022,3:210-215.
 DAI En-dong,LIU Ting-ting,MAO Ling-juan,et al.Process simulation and operation optimization of semi-regeneration reforming unit[J].Petrochemical technology & application,2022,3:210-215.
点击复制

半再生重整装置流程模拟及运行优化(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2022年3期
页码:
210-215
栏目:
出版日期:
2022-05-10

文章信息/Info

Title:
Process simulation and operation optimization of semi-regeneration reforming unit
文章编号:
1009-0045(2022)03-0210-06
作者:
代恩东1刘亭亭1毛玲娟1刘俊贤2胡健2
1.浙江石油化工有限公司,浙江 舟山 316000;2.广东辛孚科技有限公司杭州分公司,浙江 杭州 310051
Author(s):
DAI En-dong1 LIU Ting-ting1 MAO Ling-juan1 LIU Jun-xian2 HU Jian2
1.Zhejiang Petroleum & Chemical Co Ltd,Zhoushan 316000 ,China; 2. Hangzhou Branch Company of Guangdong Syspetro Technology Co Ltd, Hangzhou 310051,China
关键词:
固定床半再生重整流程模拟C≥5重整生成油研究法辛烷值运行优化经济效益
Keywords:
fixed bed semi-regenerative reforming process simulationC≥5 reformate research octane number operation optimization economic benefit
分类号:
TE 624.4+2
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2022.02.0132
文献标识码:
B
摘要:
某炼厂40万t/a半再生重整装置的催化剂处于运行末期,拟在实施停工检修与再生计划之前的1个月持续生产期间实现装置的综合产出及效益。为此,利用SP-Reform分子级流程模拟与优化软件对该装置进行了全流程建模优化与可行性评价,并通过进一步分析及模拟操控优化,将重整反应系统气液分离器压力降低0.2 MPa,以及相应匹配调整了4台重整反应器的反应温度,并应用于实际生产。结果表明:在进料量无变化,以及确保重整裂解深度及关键产物C≥5重整生成油收率及其性质前提下,不仅优化了催化剂在运行末期再生之前的效用,而且C≥5重整生成油含芳烃质量分数,及其研究法辛烷值(RON)相应分别提高了4.68个百分点和2.83个单位,每吨精制石脑油制得重整氢生成量也增加了11.50 m3/h。
Abstract:
The catalyst of 0.4 Mt/a semi-regeneration reforming unit in a refinery was at the final stage of its operation period, the comprehensive output and benefit of the unit was expected to be realized during the continuous production period of 1 month before the coming planned implementation of shutdown overhaul and catalyst regeneration. In response to this demand, the relevant process simulation, operation optimization and feasibility evaluation to this unit were carried out by SP-reform process simulation software. Through the further analysis and simulation control optimization, the gas-liquid separator pressure of the reforming reaction system was reduced by 0.2 MPa, and the matching reaction temperatures to 4 reforming reactors were adjusted accordingly, then applied to the actual production practice. The results showed that under the premise of no change in raw materials feed amount and ensuring the reforming cracking depth and the yield and quality of C≥5 reformate, the rest utility performance of catalyst was not only optimized before regeneration, but also the aromatic hydrocarbon mass fraction and the research octane number of the C≥5 reformate increased by 4.68 percentage points and 2.83 units respectively, moreover the reforming hydrogen production per ton of refined naphtha increased by 11.50 m3/h.

参考文献/References

[1] 马爱增. 中国催化重整技术进展[J]. 中国科学, 2014,44(1):5-7.[2] 周祥, 王杰广. 半再生重整分子水平反应动力学模型[J]. 石油学报(石油加工), 2016,32(8):749-750. [3] 刘仁旭. 催化重整装置降压操作对产品的影响[J]. 石油炼制与化工, 2006,37(12):23-24. [4] 刘鹏飞. 半再生催化重整全流程模拟与优化[D]. 大连:大连理工大学, 2015.

备注/Memo

备注/Memo:
浙江省舟山市科技计划资助项目(项目编号:2021 C 11004);浙江石油化工有限公司科学研究与技术开发资助项目(项目编号:ZSH-RD-20-010)
更新日期/Last Update: 2022-05-10