|本期目录/Table of Contents|

[1]张凯,张焕玲,王国玮,等.黏结剂对Fe基乙苯脱氢催化剂性能的影响[J].石化技术与应用,2022,4:229-232.
 ZHANG Kai,ZHANG Huan-ling,WANG Guo-wei,et al.Effect of binders on Fe-based ethylbenzene dehydrogenation catalysts′ performance[J].Petrochemical technology & application,2022,4:229-232.
点击复制

黏结剂对Fe基乙苯脱氢催化剂性能的影响(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2022年4期
页码:
229-232
栏目:
出版日期:
2022-07-10

文章信息/Info

Title:
Effect of binders on Fe-based ethylbenzene dehydrogenation catalysts′ performance
文章编号:
1009-0045(2022)04-0229-04
作者:
张凯张焕玲王国玮李春义
中国石油大学(华东) 重质油国家重点实验室,山东 青岛 266580
Author(s):
ZHANG Kai ZHANG Huan-ling WANG Guo-wei LI Chun-yi
State Key Laboratory of Heavy Oil Processing, China University of Petroleum(East China), Qingdao 266580,China
关键词:
乙苯脱氢Fe基催化剂氧化铝高岭土二氧化硅水泥耐磨损性能
Keywords:
ethylbenzene dehydrogenation Fe-based catalyst alumina kaolin silica cement attrition wear resistance
分类号:
TQ 426.94
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2022.04.0229
文献标识码:
B
摘要:
采用溶胶-凝胶法制备了含黏结剂的系列Fe基乙苯脱氢催化剂,并进行了结构表征,考察了4种黏结剂(高岭土、水泥、二氧化硅、氧化铝)对Fe基催化剂耐磨损性能和乙苯脱氢反应性能的影响。结果表明:与未添加黏结剂的催化剂相比,高岭土和氧化铝可提高催化剂的比表面积、孔容和孔径,水泥和二氧化硅会降低催化剂比表面积;加入黏结剂的4种催化剂耐磨损性能均有改善,加入氧化铝的催化剂耐磨损性能最佳,且乙苯脱氢活性和苯乙烯选择性最高。
Abstract:
A series of Fe-based catalysts containing four binders (including kaolin, cement, silica and alumina) for ethylbenzene dehydrogenation reaction were prepared and characterized, and the effects of four binders on attrition resistance and ethylbenzene dehydrogenation of Fe-based catalyst were investigated. The results showed that compared with the catalyst without binder, adding kaolin and alumina could improve catalyst′s specific surface area, while adding cement and silica could greatly reduce catalyst′s specific surface area, and attrition resistance of the four kinds of catalysts containing binder were all improved, catalyst with alumina had the highest improvement. Among the four binder-containing catalysts, the catalyst with alumina had the highest ethylbenzene dehydrogenation activity and styrene selectivity.

参考文献/References

[1] Muhler M, Schütze J, Wesemann M, et al. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene: I. Solid-state chemistry and bulk characterization [J].Journal of Catalysis,1990,126(2):339-360.[2] Addiego W P, Estrada C A, Goodman D W, et al.An IR study of the dehydrogenation of ethylbenzene to styrene over iron-based catalysts[J].Journal of Catalysis,1994,146(2): 407-414.[3] Oliveira A C, Fierro J L G, Valentini A, et al. Non-toxic Fe-based catalysts for styrene synthesis: The effect of salt precursors and aluminum promoter on the catalytic properties[J]. Catalysis Today,2003,85(1):49-57.[4] Dulami?掎?觍 N, M?觍ic?觍neanu A, Sayle D C, et al.Ethylbenzene dehydrogenation on Fe2O3-Cr2O3-K2CO3 catalysts promoted with transitional metal oxides[J].Applied Catalysis A: General,2005,287(1):9-18.[5] Zeiser T, Steven M, Freund H, et al. Analysis of the flow field and pressure drop in fixed-bed reactors with the help of lattice Boltzmann simulations[J].Philosophical Transactions(Series A: Mathematical, Physical and Engineering Sciences), 2002, 360(1792): 507-520.[6] 李春义,王国玮.丙烷和丁烷气固相催化脱氢制烯烃[J].中国科学(化学),2018,48(4): 342-361.[7] Li C, Wang G.Dehydrogenation of light alkanes to mono-olefins[J].Chemical Society Reviews, 2021, 50: 4359-4381.[8] 王国玮,吴文龙,李春义,等.异丁烷催化脱氢反应中钼基催化剂载体效应的研究[J].石油炼制与化工, 2014, 45(1): 15-19.[9] Sanfilippo D.Dehydrogenations in fluidized bed: Catalysis and reactor engineering[J].Catalysis Today, 2011,178:142-150.[10] Hao J,Zhao Y,Ye M,et al.Influence of temperature on fluidized-bed catalyst attrition behavior [J].Chemical Engineering & Technology,2016,39(5):927-934.[11] Michorczyk P,Kustrowski P,Chmielarz L,et al.Influence of redox properties on the activity of iron oxide catalysts in dehydrogenation of propane with CO2[J].Reaction Kinetics & Catalysis Letters,2004, 82: 121-130.[12] Qian L,Wang A,Wang X,et al.Mesoporous γ-alumina synthesized by hydro-carboxylic acid as structure-directing agent [J].Microporous Mesoporous Materials,2006,92(1):10-21.[13] Kim D,Ende M,Hudon P, et al.Coupled experimental study and thermodynamic optimization of the K2O-MgO and K2O-MgO-SiO2 systems[J].Metallurgical and Materials Transactions B, 2017, 48: 2788-2803. [14] Miao P, Li K, Fan J, et al.Efficient ring-opening reaction of tetralin over nanosized ZSM-5 zeolite:Effect of SiO2/Al2O3 ratio and reaction condition[J].Energy & Fuels,2019,33(10):9480-9490. [15] Huang H,Wang H,Zhu H S,et al.Enhanced ethene to propene ratio over Zn modified SAPO-34 zeolites in methanol-to-olefin reaction[J].Catalysis Science & Technology,2019,9:2203-2210.[16] Lónyi F,Valyon J.On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite [J].Microporous Mesoporous Materials,2001,47(2):293-301.[17] Michorczyk P,Kustrowski P,Chmielarz L,et al.Influence of redox properties on the activity of iron oxide catalysts in dehydrogenation of propane with CO2[J].Reaction Kinetic Catalysis Letter,2004, 82:121-130. [18] Kim W,Kim J,Lee S,et al.Mesopore-selective incorporation of strong Br?尴nsted acid catalytic sites via aluminium grafting on hierarchically porous siliceous MFI zeolite[J].Microporous and Mesoporous Materials,2020,305:110353.[19] Zhang K,Miao P,Zhang H,et al.Research on ethylbenzene dehydrogenation over the Fe-Al-based catalysts in a circulating fluidized-bed unit[J].Journal of the Taiwan Institute of Chemical Engineers,2021,128: 55-63.

备注/Memo

备注/Memo:
国家自然科学基金项目(项目编号:U 1362201)
更新日期/Last Update: 2022-07-10