|本期目录/Table of Contents|

[1]魏昕,张欣悦,朱玉琴*,等.制备方法对磷锆复合改性ZSM-5分子筛及其催化裂化性能的影响[J].石化技术与应用,2022,6:377-382.
 WEI Xin,ZHANG Xin-yue,ZHU Yu-qin,et al.Effect of preparation methods on phosphorus-zirconium composite modified ZSM-5 zeolites and their catalytic cracking properties[J].Petrochemical technology & application,2022,6:377-382.
点击复制

制备方法对磷锆复合改性ZSM-5分子筛及其催化裂化性能的影响(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2022年6期
页码:
377-382
栏目:
出版日期:
2022-11-10

文章信息/Info

Title:
Effect of preparation methods on phosphorus-zirconium composite modified ZSM-5 zeolites and their catalytic cracking properties
文章编号:
1009-0045(2022)06-0377-06
作者:
魏昕1张欣悦1朱玉琴1*吕鹏刚2潘志爽2
1.西安石油大学 化学化工学院,陕西 西安 710065; 2.中国石油石油化工研究院 兰州化工研究中心,甘肃 兰州 730060
Author(s):
WEI Xin1 ZHANG Xin-yue1 ZHU Yu-qin1 L?譈 Peng-gang2 PAN Zhi-shuang2
1.College of Chemistry and Chemical Engineering,Xi′an Shiyou University,Xi′an 710065,China;2.Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina,Lanzhou 730060,China
关键词:
ZSM-5分子筛催化裂化复合改性丙烯制备方法
Keywords:
ZSM-5 zeolite catalytic cracking phosphorus zirconium composite modification propylene preparation method
分类号:
TE 624.9
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2022.06.0377
文献标识码:
B
摘要:
在组合使用烘干、焙烧、水热老化处理的不同方法制备了磷改性ZSM-5分子筛的基础上,引入金属组分锆制备了磷锆复合改性ZSM-5分子筛系列试样(标记为PHZ-Z 5,PBZ-Z 5,PLZ-Z 5),并以复合改性分子筛为活性组分制备了催化裂化助剂,使用XRD,BET,NH3-TPD,XPS等方法对经水热老化处理后的磷锆复合改性后分子筛进行了表征,在先进的催化裂化催化剂评价装置(ACE)上,考察评价了不同改性方法制备所得催化助剂对重油催化裂化生产丙烯的影响。结果表明:在连续依次经烘干、焙烧、水热老化处理所得磷改性ZSM-5分子筛后,接着引入锆制备的磷锆复合改性分子筛水热老化试样PLZ-Z 5 L保留有最多的微孔结构和总酸量;当含PLZ-Z 5试样组分制备的催化助剂应用于重油催化裂化反应时,具有最高的丙烯和液化气收率,分别为8.66%和28.41%。
Abstract:
The preparation of phosphorus(P)-modified ZSM-5 zeolites by combined adopting different methods such as drying, calcinating and hydrothermal deactivation treatments were taken as the basis, subsequently, zirconium(Zr)was added to the previous modified zeolites to prepare series of P-Zr composite modified ZSM-5 zeolites samples (labeled as PHZ-Z 5, PBZ-Z 5, PLZ-Z 5), and the catalytic cracking additives were also prepared with the composite modified zeolites as active components, and the P-Zr composite modified zeolites after hydrothermal deactivation treatment were characterized by XRD, BET, NH3-TPD, XPS, etc. The effects of the catalytic additives prepared by different modification methods on the production of propylene by catalytic cracking of heavy oil were evaluated on the advanced cracking evaluation unit(ACE). The results showed that: after the P-modified ZSM-5 zeolites were prepared by the combination of drying, calcinating and hydrothermal deactivation treatments sequentially, the P-Zr composite modified zeolite sample PLZ-Z 5 L was prepared by introducing Zr, then add the P-Zr composite modified zeolite sample PLZ-Z 5 prepared by introducing Zr, and it could retain the most microporous structure and total acid amount after hydrothermal aging treatment. Moreover, when the catalytic additive prepared from the PLZ-Z 5 sample was applied to the catalytic cracking reaction of heavy oil, which had the highest propylene and LPG(liquefied petroleum gas) yields of 8.66% and 28.41%, respectively.

参考文献/References

[1] 王卅.我国丙烯下游产业产品市场情况[J]. 化工进展, 2014, 33(9): 2517-2520.[2] 王中银.丙烯下游产品市场现状和产业链选择[J]. 煤炭加工与综合利用, 2016, 34(4): 19-20.[3] 侯雨璇,王红秋,鲜楠莹. 世界丙烯生产技术进展与经济性分析[J]. 现代化工, 2020, 40(10): 60-65.[4] Alotibi M F, Alshammari B A, Alotaibi M H, et al. ZSM-5 zeolite based additive in FCC process: A review on modification for improving propylene production[J]. Catalysis Surveys From Japan, 2020, 24(1): 1-10.[5] Degnan T F. The implication of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries[J]. Journal of Catalysis, 2003,216(1/2): 32-46.[6] 吕鹏刚,刘涛,叶行,等. FCC工艺中提升增产丙烯助剂性能研究进展[J]. 化工进展, 2022, 41(1): 210-220.[7] Yang J, Sun H. A theoretical study of hydrothermal stability of P-modified ZSM-5 zeolites[J]. Science in China(Series B: Chemistry), 2009, 52(3): 282-287.[8] Kang N Y, Woo S I, Lee Y J, et al. Enhanced hydrothermal stability of ZSM-5 formed from nanocrystalline seeds for naphtha catalytic cracking[J]. Journal of Materials Science, 2016, 51(8): 3735-3749.[9] Corma A, Mengual J, Miguel P J. Stabilization of ZSM-5 zeolite catalysts for steam catalytic cracking of naphthafor production of propene and ethene[J].Applied Catalysis A(General),2012(421): 121-134.[10] Zhao Y, Liu J X, Xiong G, et al. Enhancing hydrothermal stability of nano-sized HZSM-5 zeolite by phosphorus modification for olefin catalytic cracking of full-range FCC gasoline[J]. Chinese Journal of Catalysis, 2017, 38(1): 138-145.[11] Lv J, Hua Z L, Ge T G, et al. Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking[J]. Microporous & Mesoporous Materials, 2017, 100(247): 31-37.[12] Van der Bij H E, Weckhuysen B M. Local silico-alumino phosphate interfaces within phosphated HZSM-5 zeolites[J]. Physical Chemistry Chemical Physics, 2014, 16(21): 9892-9903.[13] Shin E W, Han J S, Jang M, et al. Phosphate adsorption on aluminum-impregnated mesoporous silicates: Surface structure and behavior of adsorbents[J]. Environmental Science & Technology, 2004, 38(3): 912-917.[14] Sun H L, Cao L Y, Zhang Y H, et al. Effect of catalyst acidity and reaction temperature on hexene cracking reaction to produce propylene[J]. Energy & Fuels, 2021, 5(4): 3295-3306.[15] Lin L F, Zhao S F, Zhang D W, et al. Acid strength controlled reaction pathways for the catalytic cracking of 1-pentene to propene over ZSM-5[J]. ACS Catalysis, 2015, 5(7): 4048-4059.[16] Epelde E, Gayubo A G, Olazar M, et al. Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene[J]. Chemical Engineering Journal, 2014(251): 80-91.[17] 冯敏超,周晓龙,李承烈,等. K/ZSM-5的正己烷催化裂解性能[J]. 应用化工, 2017, 46(3): 430-434.[18] Xu R F, Liu J X, Liang C C, et al. Effect of alkali metal ion modification on the catalytic performance of nano-HZSM-5 zeolite in butene cracking[J]. Journal of Fuel Chemistry & Technology, 2011, 39(6): 449-454.[19] Nguyen L P, Van T T, Ngo P T, et al. Modification of a ZSM-5 catalyst by La for use in fluid catalytic cracking[J].Petroleum Science and Technology, 2019, 37(14): 1713-1721.[20] Liu Q, Zhang M, Sun L B, et al. The performance of catalytic conversion of ZSM-5 comodified with gold and lanthanum for increasing propylene production[J]. Industrial & Engineering Chemistry Research, 2019, 58(32): 14695-14704.[21] Qi C X, Wang Y X, Ding X T, et al. Catalytic cracking of light diesel over Au/ZSM-5 catalyst for increasing propylene production [J]. Chinese Journal of Catalysis, 2016, 37(10): 1747-1754.[22] Wang G L, Wu W, Zan W, et al. Preparation of Zn-modified nano-ZSM-5 zeolite and its catalytic performance in aromatization of 1-hexene[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1580-1586.[23] Zhou X Z, Liu Y, Meng X J, et al. Synthesis and catalytic cracking performance of Fe/Ti-ZSM-5 zeolite from attapulgite mineral[J]. Chinese Journal of Catalysis, 2013, 4(8): 1504-1512.[24] Mehla S, Kukade S, Kumar P, et al. Fine tuning H-transfer and β-scission reactions in VGO FCC using metal promoted dual functional ZSM-5[J]. Fuel, 2019(242): 487-495.[25] 王世珍,黄南贵. ZSM-5沸石氮吸附低压滞后现象的研究[J]. 石油炼制与化工, 1999, 30(4): 52-57.[26] 张婉静,于勤,魏国祥,等. 高温水蒸汽处理后ZSM-5分子筛结构的变化[J]. 石油学报(石油加工), 1985, 1(1): 41-51.[27] Bonardet J, Fraissard J, Unger K, et al. The use of 15N-NMR for the understanding of nitrogen physisorption[J]. Studies in Surface Science and Catalysis , 1994(87): 319-326.[28] Groen J C, Peffer L A A, Moulijn J A, et al. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J]. Colloids and Surfaces A(Physicochemical and Engineering Aspects), 2004, 241(1/3): 53-58.[29] 陈崇城,陈航榕,俞建长,等. 多级孔WO3/ZrO2固体酸催化剂的制备与表征[J]. 催化学报, 2011, 32(4): 647-651.[30] Gil-Horán R H, Chavarría-Hernández J C, Quintana-Owen P, et al. Ethanol conversion to short-chain olefins over ZSM-5 zeolite catalysts enhanced with P,Fe,and Ni[J]. Topics in Catalysis, 2020, 63(5): 414-427.[31] Sherwood P M A. Introduction to studies of phosphorus-oxygen compounds by XPS[J]. Surface Science Spectra,2002,9(1):62-66.[32] Gottardi G, Laidani N, Micheli V, et al. Effects of oxygen concentration in the Ar/O2 plasma on the bulk structure and surface properties of RF reactively sputtered zirconia thin films[J]. Surface and Coatings Technology, 2008, 202(11): 2332-2337.

备注/Memo

备注/Memo:
陕西省自然科学基础研究计划——青年项目基金资助项目(项目编号:2022 JQ-115)
更新日期/Last Update: 2022-11-10