[1] 王卅.我国丙烯下游产业产品市场情况[J]. 化工进展, 2014, 33(9): 2517-2520.[2] 王中银.丙烯下游产品市场现状和产业链选择[J]. 煤炭加工与综合利用, 2016, 34(4): 19-20.[3] 侯雨璇,王红秋,鲜楠莹. 世界丙烯生产技术进展与经济性分析[J]. 现代化工, 2020, 40(10): 60-65.[4] Alotibi M F, Alshammari B A, Alotaibi M H, et al. ZSM-5 zeolite based additive in FCC process: A review on modification for improving propylene production[J]. Catalysis Surveys From Japan, 2020, 24(1): 1-10.[5] Degnan T F. The implication of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries[J]. Journal of Catalysis, 2003,216(1/2): 32-46.[6] 吕鹏刚,刘涛,叶行,等. FCC工艺中提升增产丙烯助剂性能研究进展[J]. 化工进展, 2022, 41(1): 210-220.[7] Yang J, Sun H. A theoretical study of hydrothermal stability of P-modified ZSM-5 zeolites[J]. Science in China(Series B: Chemistry), 2009, 52(3): 282-287.[8] Kang N Y, Woo S I, Lee Y J, et al. Enhanced hydrothermal stability of ZSM-5 formed from nanocrystalline seeds for naphtha catalytic cracking[J]. Journal of Materials Science, 2016, 51(8): 3735-3749.[9] Corma A, Mengual J, Miguel P J. Stabilization of ZSM-5 zeolite catalysts for steam catalytic cracking of naphthafor production of propene and ethene[J].Applied Catalysis A(General),2012(421): 121-134.[10] Zhao Y, Liu J X, Xiong G, et al. Enhancing hydrothermal stability of nano-sized HZSM-5 zeolite by phosphorus modification for olefin catalytic cracking of full-range FCC gasoline[J]. Chinese Journal of Catalysis, 2017, 38(1): 138-145.[11] Lv J, Hua Z L, Ge T G, et al. Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking[J]. Microporous & Mesoporous Materials, 2017, 100(247): 31-37.[12] Van der Bij H E, Weckhuysen B M. Local silico-alumino phosphate interfaces within phosphated HZSM-5 zeolites[J]. Physical Chemistry Chemical Physics, 2014, 16(21): 9892-9903.[13] Shin E W, Han J S, Jang M, et al. Phosphate adsorption on aluminum-impregnated mesoporous silicates: Surface structure and behavior of adsorbents[J]. Environmental Science & Technology, 2004, 38(3): 912-917.[14] Sun H L, Cao L Y, Zhang Y H, et al. Effect of catalyst acidity and reaction temperature on hexene cracking reaction to produce propylene[J]. Energy & Fuels, 2021, 5(4): 3295-3306.[15] Lin L F, Zhao S F, Zhang D W, et al. Acid strength controlled reaction pathways for the catalytic cracking of 1-pentene to propene over ZSM-5[J]. ACS Catalysis, 2015, 5(7): 4048-4059.[16] Epelde E, Gayubo A G, Olazar M, et al. Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene[J]. Chemical Engineering Journal, 2014(251): 80-91.[17] 冯敏超,周晓龙,李承烈,等. K/ZSM-5的正己烷催化裂解性能[J]. 应用化工, 2017, 46(3): 430-434.[18] Xu R F, Liu J X, Liang C C, et al. Effect of alkali metal ion modification on the catalytic performance of nano-HZSM-5 zeolite in butene cracking[J]. Journal of Fuel Chemistry & Technology, 2011, 39(6): 449-454.[19] Nguyen L P, Van T T, Ngo P T, et al. Modification of a ZSM-5 catalyst by La for use in fluid catalytic cracking[J].Petroleum Science and Technology, 2019, 37(14): 1713-1721.[20] Liu Q, Zhang M, Sun L B, et al. The performance of catalytic conversion of ZSM-5 comodified with gold and lanthanum for increasing propylene production[J]. Industrial & Engineering Chemistry Research, 2019, 58(32): 14695-14704.[21] Qi C X, Wang Y X, Ding X T, et al. Catalytic cracking of light diesel over Au/ZSM-5 catalyst for increasing propylene production [J]. Chinese Journal of Catalysis, 2016, 37(10): 1747-1754.[22] Wang G L, Wu W, Zan W, et al. Preparation of Zn-modified nano-ZSM-5 zeolite and its catalytic performance in aromatization of 1-hexene[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1580-1586.[23] Zhou X Z, Liu Y, Meng X J, et al. Synthesis and catalytic cracking performance of Fe/Ti-ZSM-5 zeolite from attapulgite mineral[J]. Chinese Journal of Catalysis, 2013, 4(8): 1504-1512.[24] Mehla S, Kukade S, Kumar P, et al. Fine tuning H-transfer and β-scission reactions in VGO FCC using metal promoted dual functional ZSM-5[J]. Fuel, 2019(242): 487-495.[25] 王世珍,黄南贵. ZSM-5沸石氮吸附低压滞后现象的研究[J]. 石油炼制与化工, 1999, 30(4): 52-57.[26] 张婉静,于勤,魏国祥,等. 高温水蒸汽处理后ZSM-5分子筛结构的变化[J]. 石油学报(石油加工), 1985, 1(1): 41-51.[27] Bonardet J, Fraissard J, Unger K, et al. The use of 15N-NMR for the understanding of nitrogen physisorption[J]. Studies in Surface Science and Catalysis , 1994(87): 319-326.[28] Groen J C, Peffer L A A, Moulijn J A, et al. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium[J]. Colloids and Surfaces A(Physicochemical and Engineering Aspects), 2004, 241(1/3): 53-58.[29] 陈崇城,陈航榕,俞建长,等. 多级孔WO3/ZrO2固体酸催化剂的制备与表征[J]. 催化学报, 2011, 32(4): 647-651.[30] Gil-Horán R H, Chavarría-Hernández J C, Quintana-Owen P, et al. Ethanol conversion to short-chain olefins over ZSM-5 zeolite catalysts enhanced with P,Fe,and Ni[J]. Topics in Catalysis, 2020, 63(5): 414-427.[31] Sherwood P M A. Introduction to studies of phosphorus-oxygen compounds by XPS[J]. Surface Science Spectra,2002,9(1):62-66.[32] Gottardi G, Laidani N, Micheli V, et al. Effects of oxygen concentration in the Ar/O2 plasma on the bulk structure and surface properties of RF reactively sputtered zirconia thin films[J]. Surface and Coatings Technology, 2008, 202(11): 2332-2337.