|本期目录/Table of Contents|

[1]王建宏,余端阳,景雨荷.羟自由基清除剂抑制络合铁降解[J].石化技术与应用,2023,2:88-92.
 WANG Jian-hong,YU Duan-yang,JING Yu-he.Inhibition of iron-chelate degradation by hydroxyl radical scavengers[J].Petrochemical technology & application,2023,2:88-92.
点击复制

羟自由基清除剂抑制络合铁降解(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年2期
页码:
88-92
栏目:
出版日期:
2023-03-10

文章信息/Info

Title:
Inhibition of iron-chelate degradation by hydroxyl radical scavengers
文章编号:
1009-0045(2023)02-0088-05
作者:
王建宏余端阳景雨荷
(北京石油化工学院 环境工程系,北京 102617)
Author(s):
WANG Jian-hongYU Duan-yangJING Yu-he
(Department of Environmental Engineering, Beijing Institute of Petrochemical Technology,Beijing 102617, China)
关键词:
络合铁降解羟自由基清除剂苯甲酸钠脱硫技术Fenton体系
Keywords:
iron-chelate degradation hydroxyl radical scavenger sodium benzoatedesulfurization technology Fenton system
分类号:
TE 644
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.02.0088
文献标识码:
B
摘要:
络合铁脱硫工艺中广泛使用的硫代硫酸盐不能完全抑制络合剂的降解,但大量补充的铁络合剂提高了运行成本。依据络合亚铁再生过程中产生的羟自由基氧化降解了铁络合剂,清除羟自由基抑制络合铁降解的原理,采用Fe2+-EDTA/H2O2的碱性Fenton体系模拟脱硫过程中羟自由基的产生,加入一系列羟自由基清除剂至该体系中,测试Fe-EDTA的降解率。结果表明:简易的Fenton体系可代替实际的络合铁脱硫过程快速筛选清除剂,质量分数为0.050%的苯甲酸钠或0.617%的丙三醇可抑制络合铁的降解,降低络合铁脱硫成本;苯甲酸钠和丙三醇具有较强清除能力的原因在于清除剂及其中间氧化产物均先于铁络合剂被羟自由基氧化。
Abstract:
Thiosulfate inhibitors widely used in the liquid phase oxidation process using iron chelate catalytic solution(LO-CAT) could not completely inhibit the degradation of iron-chelate, which increased the operation cost by replenishing iron-chelate in the desulfurization process. According to the principle that the iron-chelate was oxidatively degraded by hydroxyl radicals produced during the reoxidation of the ferrous chelate to the ferric chelate, and scavenging hydroxyl radicals could inhibit the degradation of iron-chelate, the alkaline Fenton system of Fe2+-EDTA/H2O2 was used to simulate the generation of hydroxyl radicals in regeneration of ferrous complexes. The degradation rate of Fe-EDTA was tested after adding a series of hydroxyl radical scavengers to the Fenton system,and the effect of the scavenger was evaluated by the degradation rate. The results showed that the simple Fenton system could replace the actual liquid phase oxidation process using iron chelate catalytic solution for rapid selection of scavengers. 0.050%(mass fraction) sodium benzoate or 0.617% (mass fraction) glycerol could completely inhibit iron-chelate degradation, which reduced the cost of LO-CAT. The reason for the strong free radical scavenging ability of sodium benzoate and glycerol was that the scavenger and its intermediate oxidation products could be oxidized by hydroxyl radicals before the iron-chelate.

参考文献/References

[1] Kazemi A, Malayeri M, Gharibi K A, et al. Feasibility study, simulation and economical evaluation of natural gas sweetening processes Part 1: A case study on a low capacity plant in iran [J]. Journal of Natural Gas Science and Engineering, 2014,20: 16-22. [2] Wubs H J, Beenackers A. Kinetics of the oxidation of ferrous chelates of EDTA and HEDTA in aqueous solution [J]. Industrial and Engineering Chemistry Research, 1993,32(11): 2580-2594. [3] Chen D, Motekaitis R J, Martell A E, et al. Oxidation of H2S to S by air with Fe (Ⅲ)-NTA as a catalyst: Catalyst degradation [J]. Canadian Journal of Chemistry, 1993,71(9): 1524-1531. [4] Chen D, Martell A E, McManus D. Studies on the mechanism of chelate degradation in iron-based, liquid redox H2S removal processes [J]. Canadian Journal of Chemistry, 1995,73(2): 264-274. [5] 徐双金, 刘旭光, 李开, 等. LO-CAT工艺技术在隆昌天然气净化厂的应用 [J]. 石油与天然气化工, 2004,33(1): 24-26. [6] 李达, 罗万明, 刘洪波, 等. 洛凯特 (LO-CAT) 脱硫工艺在延安炼油厂硫磺回收装置中的应用 [J]. 河南化工, 2010,27(1): 54-56. [7] Kang C, Sobkowiak A, Sawyer D T. Iron(Ⅱ)-induced generation of hydrogen peroxide from dioxygen: Induction of Fenton chemistry and ketonization of hydrocarbons [J]. Inorganic Chemistry, 1994,33(1): 79-82. [8] Zang V, Van E R. Kinetics and mechanism of the autoxidation of iron(Ⅱ) induced through chelation by ethylenediaminetetraacetate and related ligands [J]. Inorganic Chemistry, 1990,29(9): 1705-1711. [9] Hao F, Guo W, Lin X, et al. Degradation of acid orange 7 in aqueous solution by dioxygen activation in a pyrite/H2O/O2 system [J]. Environmental Science and Pollution Research International, 2014,21(10): 6723. [10] King D W, Lounsbury H A, Millero F J. Rates and mechanism of Fe(Ⅱ) oxidation at nanomolar total iron concentrations [J]. Environmental Science & Technology, 1995,29(3): 818-824. [11] 王建宏, 赵子莹. 降低络合亚铁在有氧条件下降解的方法:中国, 201911149683.6[P].2022-05-13.[12] Hua G, Zhang Q, McManus D, et al. Improvement of the Fe-NTA sulfur recovery system by the addition of a hydroxyl radical scavenger [J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2007,182(1): 181-198. [13] 张乃骞. Lo-cat Ⅱ 工艺在天然气净化中的应用 [J]. 天然气与石油, 2002,20(3): 16-19. [14] Karimi A, Tavassoli A, Nassernejad B. Kinetic studies and reactor modeling of single step H2S removal using chelated iron solution [J]. Chemical Engineering Research and Design, 2010,88(5/6): 748-756. [15] 魏冬旭, 胡珅, 孙莹, 等. 高效液相色谱法测定食品中乙二胺四乙酸二钠 [J]. 检验检疫学刊, 2013,23(6): 50-53.[16] 吴素芳, 沈寒晰, 张金峰, 等. 络合铁法脱硫用铁稳定剂的研究 [J]. 石化技术与应用, 2021,39(1): 29-32. [17] 朱振峰, 刘有智, 罗莹, 等. EDTA-HEDTA复配络合铁体系脱H2S性能研究 [J]. 化学通报, 2014,77(5): 436-440. [18] 戴俊, 王政锦, 宋会磊, 等. 基于苯甲酸荧光法的Fenton试剂氧化降解瓦斯体系羟基自由基测定[J]. 安全与环境学报, 2014,14(5): 82-85. [19] 薛娟琴, 蒋朦, 于丽花, 等. 捕捉剂对电化学氧化体系中羟基自由基检测的影响特性[J]. 分析科学学报, 2015,31(5): 606-610. [20] 张伟艺, 马宪印, 邹受忠, 等. 铂和钯上丙三醇电氧化研究进展:从反应机理到催化材料[J]. 电化学, 2021,27(3): 233-256.

备注/Memo

备注/Memo:
大学生研究训练计划项目(项目编号:2018 X 00156)
更新日期/Last Update: 2023-03-10