|本期目录/Table of Contents|

[1]徐浩,邹琳玲,晋梅.丙烷脱氢制丙烯工艺模拟与用能优化[J].石化技术与应用,2023,2:135-140.
 XU Hao,ZOU Lin-ling,JIN Mei.Process simulation and energy optimization of propanedehydrogenation to propylene[J].Petrochemical technology & application,2023,2:135-140.
点击复制

丙烷脱氢制丙烯工艺模拟与用能优化(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年2期
页码:
135-140
栏目:
出版日期:
2023-03-10

文章信息/Info

Title:
Process simulation and energy optimization of propanedehydrogenation to propylene
文章编号:
1009-0045(2023)02-0135-06
作者:
徐浩12邹琳玲1晋梅1
(1.江汉大学 光电材料与技术学院,湖北 武汉 430056;2.中国石化茂名分公司,广东 茂名 525011)
Author(s):
XU Hao12 ZOU Lin-ling1 JIN Mei1
(1.School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China;2. Maoming Petrochemical Co Ltd, SINOPEC,Maoming 525011,China)
关键词:
丙烷脱氢丙烯Aspen Plus模拟能量集成夹点技术公用工程
Keywords:
propane dehydrogenationpropyleneAspen Plus simulationenergy integrationpinch technologyutility
分类号:
TQ 221.21+2
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.02.0135
文献标识码:
B
摘要:
采用丙烷质量分数为97%的液化石油气(LPG)生产丙烯,通过Aspen Plus流程模拟软件对60万t/a 丙烷脱氢Oleflex工艺进行模拟与优化,并使用Aspen Energy Analyzer软件通过夹点技术对优化后的流程进行能量集成。结果表明:在模拟优化最佳工艺条件下,LPG消耗量为73.28 万t/a,可生产质量分数为99.6%的聚合级丙烯产品达60万t/a;系统用能优化后,热负荷降到6.032×108 kJ/h,热公用工程降幅为23.67%;冷负荷降到5.889×108 kJ/h,冷公用工程降幅为30.19%;增加换热器3台,总换热面积增加了9.95×103 m2,总成本指数降低了18.38%。
Abstract:
Propylene was produced using liquefied petroleum gas (LPG) with a propane mass fraction of 97%. The Oleflex process of 600 kt/a propane dehydrogenation to propylene was simulated and optimized by Aspen Plus process simulation software, and then the energy integration of the optimized process was performed by Aspen Energy Analyzer software through pinch technology. The simulation results showed that under the optimized process operation, the consumption of LPG was 732.8 kt/a, and 600 kt/a of 99.6% polymer grade propylene was produced. After the optimization of system energy consumption, the heating load was reduced to 6.032×108 kJ/h; the thermal utility was decreased by 23.67%; the cooling load was reduced to 5.889×108 kJ/h; the cooling utility was reduced by 30.19%. Three heat exchangers were added. The total heat exchange area increased by 9.95×103 m2, and the total cost index decreased by 18.38%.

参考文献/References

[1] 陈永利, 陈浩, 郭振宇. 丙烯产业发展现状及趋势分析[J]. 炼油技术与工程, 2019, 49(12): 1-5.[2] 杜凯敏, 范杰. 丙烷氧化脱氢制丙烯研究进展[J]. 化工进展, 2019, 38(6): 2697-2706.[3] 刘治华, 李宇静. 中国丙烯市场回顾及“十四五”展望[J]. 现代化工, 2021, 41(8): 16-18.[4] 陈浩, 詹小燕, 郭振宇. 丙烷脱氢工艺发展趋势分析[J]. 炼油技术与工程, 2020, 50(11): 9-13.[5] 卢存亮, 王磊, 宫静. 新型丙烷脱氢技术的应用研究[J]. 炼油与化工, 2022, 33(1): 23-25.[6] 孟伟春. 中国丙烯主要生产工艺竞争力分析[J]. 中国石油和化工经济分析, 2018(6): 59-63.[7] 高伟, 赵亚龙. 丙烷脱氢制丙烯工艺及技术要点分析[J]. 化工设计通讯, 2017, 43(11): 139.[8] 李慧, 黄寻, 肖文德. 丙烷脱氢规整反应器的模拟研究[J]. 石油化工, 2017, 46(2): 209-216.[9] 韦迪, 喻俊杰, 邵媛媛, 等. 丙烷化学链氧化脱氢过程模拟与能耗分析[J]. 石油学报(石油加工), 2020, 36(6): 1361-1369.[10] 董忠哲, 苏佳林, 郭鑫. 流化床丙烷脱氢反应段的模拟及优化[J]. 石油石化绿色低碳, 2019, 4(6): 29-35.[11] 叶敏, 李贤. 丙烷脱氢氧化制丙烯热力学分析[J]. 化学工业与工程技术, 2011, 32(6): 18-21.[12] 董忠哲, 苏佳林, 郭鑫. 丙烷脱氢分离段的模拟及优化[J]. 石油石化绿色低碳, 2020, 5(1): 20-25.[13] 包宗宏, 武文良. 化工计算与软件应用[M]. 北京: 化学工业出版社, 2013:16-17.[14] 张琦. 丙烷脱氢及其强化工艺的模拟和分析[D]. 上海: 华东理工大学, 2015:45-59.[15] 罗祖云, 钟梦君, 李炎, 等. 丙烷脱氢制丙烯工艺的流程模拟及换热网络的优化设计[J]. 安徽化工, 2017, 43(3): 64-66.[16] 魏江, 冯李立, 郑小青, 等. 用夹点技术对丙烷脱氢制丙烯装置换热网络优化分析[J]. 石油与天然气化工, 2016, 45(5): 39-42.

备注/Memo

备注/Memo:
江汉大学校级科研资助项目(项目编号:2021 yb 015)
更新日期/Last Update: 2023-03-10