|本期目录/Table of Contents|

[1]饶维,刘晨*.导电石墨掺杂介孔二氧化钛复合体的制备及光催化性能[J].石化技术与应用,2023,3:182-187.
 RAO Wei,LIU Chen.Preparation and photocatalytic properties of mesoporous titanium dioxidenanocomposites doped with conductive graphite[J].Petrochemical technology & application,2023,3:182-187.
点击复制

导电石墨掺杂介孔二氧化钛复合体的制备及光催化性能(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年3期
页码:
182-187
栏目:
出版日期:
2023-05-10

文章信息/Info

Title:
Preparation and photocatalytic properties of mesoporous titanium dioxidenanocomposites doped with conductive graphite
文章编号:
1009-0045(2023)03-0182-06
作者:
饶维刘晨*
(湖南石油化工职业技术学院,湖南 岳阳 414000)
Author(s):
RAO WeiLIU Chen
(Hunan Petrochemical Vocational Technology College,Yueyang 414000,China)
关键词:
二氧化钛(TiO2)介孔材料水热合成法石墨光催化甲基橙
Keywords:
TiO2mesoporous materialshydrothermal synthesisgraphitephotocatalysismethyl orange
分类号:
TQ 424.26
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.03.0182
文献标识码:
B
摘要:
以十六烷基三甲基溴化铵(CTAB)为造孔模板,四氯化钛为钛源,无水乙醇为溶剂,采用水热合成法制备出导电石墨掺杂介孔二氧化钛纳米复合材料。利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)等分析手段表征了复合体的结构和形貌。并以紫外灯为光源,甲基橙为目标降解物,对复合体的光催化性能进行了评价。结果表明:CTAB与导电石墨的掺杂比显著影响复合体的性能;当二者的摩尔比为 3∶1 时,复合体的孔径最为规整、光催化性能最好;利用 2.2 g/L该试样催化降解10 mg/L甲基橙溶液的效果最佳,降解率达到88.5%。
Abstract:
Conductive graphite-doped mesoporous titanium dioxide nanocomposites were prepared by hydrothermal method using cetyltrimethylammonium bromide (CTAB) as template, titanium tetrachloride as titanium source and anhydrous ethanol as solvent. The structure and morphology of the composites were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The photocatalytic performance of the composite was evaluated by using methyl orange as the target degradation substance under UV light. The results showed that the doping ratio of CTAB and conductive graphite significantly affected the performance of the composite. When the molar ratio of CTAB and conductive graphite was 3∶1, the pore size of the complex was the most regular and the photocatalytic performance was the best. When 2.2 g/L of the sample was used to catalyze the degradation of 10 mg/L methyl orange solution, the degradation rate reached 88.5%.

参考文献/References

[1] 姜丽娜,刘金华,孟德营. 二氧化钛光催化技术的应用[J]. 山东陶瓷,2009,6 (5):1-2.[2] 和东亮. 掺杂改性的二氧化钛纳米材料的光催化性能研究[D]. 长春:吉林大学,2008 :16-20.[3] Ahmad W, Park E, Lee H, et al. Defective domain control of TiO2 support in Pt/TiO2 for room temperature formaldehyde (HCHO) remediation[J]. Applied Surface Science,2020,538(4):47-54.[4] 徐贺龙,王俊磊,王雪芹. TiO2 基光催化剂结构调控及改性方法研究进展[J].化工新型材料,2020,48(6):38-42.[5] Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review[J]. Applied Surface Science, 2017, 392(15): 658-686. [6] 陈奇慧,程凯,王俊磊,等. TiO2 纳米管负载改性方法研究进展[J]. 化工新型材料,2019,47(9):14-20.[7] Zhang D, Chen J, Xiang Q, et al. Transition-metal-ion (Fe, Co, Cr, Mn, etc.) doping of TiO2 nanotubes: A general approach[J].Inorganic Chemistry,2019, 58(19): 911-914.[8] Tian L, Xing L, Shen X, et al. Visible light enhanced Fe-I-TiO2 photocatalysts for the degradation of gaseous benzene-sci-ence direct[J].Atmospheric Pollution Research, 2020,11(1):179-185.[9] Wu Y, Mu H, Cao X, et al. Polymer-supported graphene–TiO2 doped with nonmetallic elements with enhanced photocatalytic reaction under visible light[J].Journal of Materials Science,2020,55(8):25-33. [10] Asahi R, Morikawa T, Ohwaki T. Visible-light photo-catalysis in nitrogen-doped titanium oxides[J].Science, 2001,293 (5528): 269-271.[11] 王硕,白丽明. 钇沉积的二氧化钛-SBA-15 纳米催化剂制备及其应用[J].无机盐工业,2019,51(3):77-81.[12] 吴正雷,彭文博,董凯,等. Ni 基催化剂处理甲基橙废水动力学及机理研究[J].当代化工,2020,49(5):850-854.[13] Cheepborisutikul S J, Ogawa M. Suppressing the photocatalytic activity of titania by precisely controlled silica coating[J]. Inorganic Chemistry, 2021, 4(2):34-41.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2023-05-10