|本期目录/Table of Contents|

[1]宋宇,辛靖,张海洪,等.硫酸负载对Pt/SO42--(ZrO2-Al2O3)催化剂性能的影响[J].石化技术与应用,2023,4:251-255.
 SONG Yu,XIN Jing,ZHANG Hai-hong,et al.Effect of sulfuric acid loading on the properties of Pt/SO42--(ZrO2-Al2O3)[J].Petrochemical technology & application,2023,4:251-255.
点击复制

硫酸负载对Pt/SO42--(ZrO2-Al2O3)催化剂性能的影响(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年4期
页码:
251-255
栏目:
出版日期:
2023-07-10

文章信息/Info

Title:
Effect of sulfuric acid loading on the properties of Pt/SO42--(ZrO2-Al2O3)
文章编号:
1009-0045(2023)04-0251-05
作者:
宋宇1辛靖1张海洪1曾土城2范文轩1王廷海23王鹏照23*
(1.中国海油化工与新材料科学研究院,北京102200;2.福州大学 石油化工学院,福建 福州 350108;3.清源创新实验室,福建 泉州 362801)
Author(s):
SONG Yu1 XIN Jing1 ZHANG Hai-hong1 ZENG Tu-cheng2 FAN Wen-xuan1 WANG Ting-hai23 WANG Peng-zhao23
(1. Research Institute of Refining and PetroChemicals (Beijing) Co Ltd, CNOOC, Beijing 102200, China;2. College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China;3. Qingyuan Innovation Laboratory,Quanzhou 362801,China)
关键词:
异丁烷正构化催化剂硫酸Pt/SO42--(ZrO2-Al2O3)单层分散酸性位
Keywords:
isobutane normalization catalystsulfuric acid Pt/SO42--(ZrO2-Al2O3) monolayer dispersion acid sites
分类号:
TE 624;TQ 426
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.04.0251
文献标识码:
B
摘要:
采用共沉淀-浸渍法制备了系列硫酸负载催化剂Pt/SO42--(ZrO2-Al2O3),利用X射线衍射仪、物理吸附仪、红外光谱仪等对其进行了表征,并在固定床微型反应装置上对其催化异丁烷正构化反应性能进行了评价。结果表明:硫酸单层分散于载体表面,硫酸负载不利于四方晶相ZrO2长大;随着硫酸负载量的增加,催化剂介孔结构的有序性增强且孔径减小,孔径最小降为3.41 nm,孔容可提高至0.091 cm3/g,比表面积增至100 m2/g以上;在反应温度为250 ℃的条件下,硫酸负载量为15%时,异丁烷转化率高达41.74%;硫酸负载量为2%时,正丁烷选择性最高为93.91%。
Abstract:
A series of Pt/SO42--(ZrO2-Al2O3) catalysts with different sulfur contents were prepared by precipitation-impregnation method and characterized by X-ray diffraction instrument, physical adsorption instrument, and infrared spectrometer. The catalysts were evaluated for isobutane isomerization reaction using a fixed bed reactor. The results showed that the sulfate species were chemically monolayer dispersed on the carrier surface and inhibited the growth of the tetragonal phase ZrO2. With the increase of sulfuric acid loading, the mesoporous structure became more ordered and the pore size decreased. The minimum pore size decreased to 3.41 nm, while the pore volume increased to 0.091 cm3/g and the specific surface area increased to higher than 100 m2/g. Under the condition of reaction temperature 250 ℃, the isobutane conversion reached 41.74% when 15% of sulfuric acid was loaded, the maximum selectivity to n-butane (93.91%) was obtained when the sulfuric acid loading was 2%.

参考文献/References

[1] 陈亮, 李明航, 苗杰, 等. nMoOx·HZSM-5催化正丁烷裂解增产丙烯性能研究 [J]. 燃料化学学报, 2018, 46(7): 864-870.[2] 张永刚, 杜志国, 张利军, 等. 丁烷裂解性能研究 [J]. 乙烯工业, 2018, 30(4): 4-6.[3] Wang S, Cao M, Sun S, et al. Selective hydroisomerization of isobutane to n-butane over WO3-ZrO2 supported Ni-Cu alloy [J]. Fuel, 2020, 280: 118274.[4] Wang H, Jiang H, Duan Y, et al. Mesoporous Ni-Cu/WOx /ZrO2 catalyst with highly dispersed WOx clusters: Efficient catalysts for selective hydroisomerization of isobutane to n-butane [J]. Ind Eng Chem Res, 2021, 60(48): 17439-17449.[5] Duan Y, Jiang H, Wang H. Bifunctional catalyst of mordenite- and alumina-supported platinum for isobutane hydroisomerization to n-butane [J]. The Canadian Journal of Chemical Engineering, 2022, 100(5): 1038-1049.[6] Wang P, Zhang W, Zhu H, et al. Insights into the reaction pathway of n-butane conversion over HZSM-5 zeolite at low temperature [J]. Appl Catal A, 2019, 584: 117135.[7] Wang P, Zhang M, Zhang W, et al. Consequence of heterogeneity of active sites for reaction mechanism of n-butane isomerization over SO42-/ZrO2-Al2O3 catalyst [J]. Appl Catal A, 2017, 542(25): 311-316.[8] Noh G, Zones S I, Iglesia E. Consequences of acid strength and diffusional constraints for alkane isomerization and β-scission turnover rates and selectivities on bifunctional metal-acid catalysts [J]. J Phys Chem C, 2018, 122(44): 25475-25497.[9] Surla K, Vleeming H, Guillaume D, et al. A single events kinetic model: n-butane isomerization [J]. Chem Eng Sci, 2004, 59(22): 4773-4779.[10] Li X, Nagaoka K, Simon L J, et al. Mechanism of butane skeletal isomerization on sulfated zirconia [J]. J Catal, 2005, 232(2): 456-466.[11] Yaluris G, Larson R B, Kobe J M, et al. Selective poisoning and deactivation of acid sites on sulfated zirconia catalysts for n-butane isomerization [J]. J Catal, 1996, 158(1): 336-342.[12] Wang P, Zhang M, Zhang W, et al. Isomerization of n-butane over SO42-/ZrO2-Al2O3 in a circulated fluidized bed reactor: Prospects for commercial application [J]. Ind Eng Chem Res, 2017, 56(30): 8456-8464.[13] Song S, Sun M, Cao M, et al. Conversion of isobutane to n-butane over bifunctional PtAu-solid superacids catalyst [J]. Chemical Papers, 2020, 74(11): 4057-4066.[14] Liu Y, Guan Y, Li C, et al. Effect of ZnO additives and acid treatment on catalytic performance of Pt/WO3/ZrO2 for n-C7 hydroisomerization [J]. J Catal, 2006, 244(1): 17-23.[15] Wang J H, Mou C Y. Catalytic behavior of nanostructured sulfated zirconia promoted by alumina: Butane isomerization [J]. Catal Today, 2008, 131(1): 162-172.[16] Katada N, Endo J I, Notsu K I, et al. Superacidity and catalytic activity of sulfated zirconia [J]. J Phys Chem B, 2000, 104(44): 10321-10328.[17] Jiang J, G?仳Ndara F, Zhang Y B, et al. Superacidity in sulfated metal–organic framework-808 [J]. J Am Chem S, 2014, 136(37): 12844-12847.

备注/Memo

备注/Memo:
中国海油化工与新材料科学研究院合作项目(项目编号:YJSCZX 07004 YJ)
更新日期/Last Update: 2023-07-10