|本期目录/Table of Contents|

[1]杨丽娜,刘冲,杜金泽,等.ZSM-5甲醇芳构化催化剂抗积炭研究进展[J].石化技术与应用,2023,4:320-325.
 YANG Li-na,LIU Chong,DU Jin-ze,et al.Research progress of anticarbon depositionin for ZSM-5 methanol aromatization catalyst[J].Petrochemical technology & application,2023,4:320-325.
点击复制

ZSM-5甲醇芳构化催化剂抗积炭研究进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年4期
页码:
320-325
栏目:
出版日期:
2023-07-10

文章信息/Info

Title:
Research progress of anticarbon depositionin for ZSM-5 methanol aromatization catalyst
文章编号:
1009-0045(2023)04-0320-06
作者:
杨丽娜1刘冲1杜金泽2马启朋3李剑1*
(1.辽宁石油化工大学 石油化工学院, 辽宁 抚顺 113001; 2. 辽宁科技大学 化学工程学院, 辽宁 鞍山 114051;3.中国石油抚顺石化公司 石油二厂,辽宁 抚顺 113000)
Author(s):
YANG Li-na1 LIU Chong1 DU Jin-ze2 MA Qi-peng3 LI Jian1
(1.School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China;2. School of Chemical Engineering, Liaoning University of Science and Technology, Anshan 114051, China;3. No.2 Petroleum Plant of Fushun Petrochemical Company, PetroChina, Fushun 113000, China)
关键词:
甲醇芳构化ZSM-5催化剂积炭抗积炭
Keywords:
methanol aromatization ZSM-5 catalystcarbon deposition anticarbon
分类号:
TQ 426;TQ 241
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.04.0320
文献标识码:
A
摘要:
介绍了ZSM-5甲醇芳构化催化剂上积炭的生成途径,从溶解性、热稳定性和积炭位置的角度分别对积炭进行了分类,对提升催化剂抗积炭能力的原理进行了分析,并对抗积炭的方法进行了综述。指出通过调变催化剂酸性,改变反应条件来提高催化剂抗积炭能力时,要兼顾催化剂的活性和选择性;调变催化剂的孔结构和粒径,可以同时促进催化剂的活性、选择性和抗积炭能力。
Abstract:
The ways of carbon deposition on ZSM-5 methanol aromatization catalyst were introduced.The carbon deposition was classified from the perspectives of solubility, thermal stability and the position of carbon deposition.The principle of improving the anticarbon deposition ability of the catalyst was analyzed, and various anti carbon deposition methods according to the principle was summarized . It was pointed out that the activity and selectivity of the catalyst should be taken into account when changing the acidity of the catalyst and the reaction conditions to improve the anticarbon ability of the catalyst. However, the activity, selectivity and coke resistance of the catalyst could be improved simultaneously by adjusting the pore structure and particle size of the catalyst.

参考文献/References

[1] Xin Y, Qi P, Duan X, et al. Enhanced performance of Zn–Sn/HZSM-5 catalyst for the conversion of methanol to aromatics [J]. Catal Lett, 2013, 143(8): 798-806.[2] 孙琳, 张艳侠, 叶娜, 等. 纳米HZSM-5沸石的骨架热稳定性及其作为催化剂的可再生性[J]. 分子催化, 2010, 24(3): 202-207.[3] Bj?准rgen M. The methanol-to-hydrocarbons reaction: Insight into the reaction mechanism from [12 C]benzene and [13 C]methanol coreactions over zeolite H-beta [J]. J Catal, 2004, 221(1): 1-10.[4] Wang S, Li Z, Qin Z, et al. Catalytic roles of the acid sites in different pore channels of H-ZSM-5 zeolite for methanol-to-olefins conversion [J]. Chin J Catal, 2021, 42(7): 1126-1136.[5] 陈治平, 徐建, 鲍晓军. 低碳烯烃异构化/芳构化反应机理研究进展 [J]. 化工进展, 2015, 34(3): 617-623.[6] 程谟杰, 杨亚书. ZnHZSM-5上脱氢环化芳构化过程的探讨 [J]. 分子催化, 1996, 10(6): 19-23.[7]李玲玲, 陈韧, 戴戬, 等. 苯和甲醇在H-ZSM-5催化剂上甲基化的反应机理 [J]. 物理化学学报, 2017, 33(4): 769-779.[8]黄慧子, 陆江银, 马空军, 等. 低碳烷烃芳构化的研究进展 [J]. 现代化工, 2018, 38(3): 52-56.[9] 李丽媛, 王建强, 陈奕, 等. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究 [J]. 化工学报, 2022, 73(6): 2669-2676.[10] Li J, Tong K, Xi Z, et al. Highly-efficient conversion of methanol to p-xylene over shape-selective Mg–Zn–Si-HZSM-5 catalyst with fine modification of pore-opening and acidic properties[J]. Catal Sci Technol, 2016, 6(13): 4802-4813.[11] 李文慧. ZSM-5分子筛催化剂上积碳物种的研究[D].大连: 大连理工大学, 2014.[12] 楚爽, 李剑, 杨丽娜, 等. ZSM-5甲醇芳构化催化剂积炭研究进展 [J]. 天然气化工(C 1化学与化工), 2016, 41(4): 89-93.[13] Xian X, Ran C, Nai C, et al. Characterization of the location of coke deposited on spent HZSM-5 zeolite by special temperature-programmed oxidation and isothermal oxidation methods [J]. Appl Catal A, 2017, 547:37-51.[14] Ruiz M G, Casados D A S, Pliego J A, et al. ZSM-5 zeolites modified with Zn and their effect on the crystal size in the conversion of methanol to light aromatics (MTA) [J]. React Kinet Mech Cat, 2020, 129(1): 471-490.[15] Xian X, Ran C, Yang P, et al. Effect of the acidity of HZSM-5/MCM-41 hierarchical zeolite on its catalytic performance in supercritical catalytic cracking of n-dodecane: Experiments and mechanism [J]. Catal Sci Technol, 2018, 8(16): 4241-4256.[16] Wang Y L, An H H, Ma H, et al. Catalytic properties and deactivation behavior of modified H-ZSM-5 in the conversion of methanol-to-aromatics [J]. Adv Powder Technol, 2021, 32(6): 1869-1880.[17] Zhou F, Gao Y, Ma H, et al. Catalytic aromatization of methanol over post-treated ZSM-5 zeolites in the terms of pore structure and acid sites properties [J]. Mol Catal, 2017, 438:37-46.[18] Tempelman C H L, Hensen E J M. On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction [J]. Appl Catal B, 2015, 176/177(10):731-739.[19] 董利荣, 何暄, 杨帆, 等. 高硅铝比多级孔ZSM-11的合成及其在苯甲醇烷基化中的应用 [J]. 石油化工, 2018, 47(1): 14-20.[20] 谭可心, 栾国颜, 裴东寒. 预晶化液法合成纳米级ZSM-5分子筛[J]. 化工技术与开发, 2016, 45(12): 5-7.[21] Yang L, Liu Z, Liu Z, et al. Correlation between H-ZSM-5 crystal size and catalytic performance in the methanol-to-aromatics reaction [J]. Chinese J Catal, 2017, 38(4): 683-690.[22] 常江伟, 付廷俊, 李忠. ZSM-5晶粒尺寸调控及其催化甲醇制烃过程积炭的形成及落位研讨 [J]. 天然气化工(C 1化学与化工), 2016, 41(1): 61-67.[23] Zhang Y, Qu Y, Wang J. Effect of crystal size on the catalytic performance of HZSM-5 zeolite in the methanol to aromatics reaction [J]. J Pet Sci Technol, 2018, 36(12): 898-903.[24] Chu R, Xu T, Meng X, et al. Improved catalytic performance of c-axis oriented HZSM-5 nanobunches synthesized by re-aging [J]. Catal Lett, 2016, 146(10): 1965-1972.[25] Cheng C, Li G, Ji D, et al. Regulating hierarchical structure and acidity of HZSM-5 for methanol to aromatics via protective desiliconization and external surface modification [J]. Microporous Mesoporous Mater, 2021, 312(11):110784-110836.[26] 苗晨昕. 甲醇芳构化ZSM-5分子筛催化剂成型研究[D].北京: 北京化工大学, 2021.[27] Ghanbari B, Kazemi Z F, Taheri R Z, et al. High-impact promotional effect of Mo impregnation on aluminum-rich and alkali-treated hierarchical zeolite catalysts on methanol aromatization [J]. ACS Omega, 2020, 5(21): 11971-11986.[28] Fu T, Shao J, Li Z. Catalytic synergy between the low Si/Al ratio Zn/ZSM-5 and high Si/Al ratio HZSM-5 for high-performance methanol conversion to aromatics [J]. Appl Catal B, 2021, 291(2):120098-120113.[29] Zhao X, Xu J, Deng F. Solid-state NMR for metal-containing zeolites: From active sites to reaction mechanism [J]. Front Chem Sci Eng, 2020, 14(2): 159-187.[30] 李剑, 曹蕾, 王丽娟, 等. 乙酰丙酸改性对HZSM-5甲醇芳构化催化剂性能的影响 [J]. 硅酸盐学报, 2021, 49(2): 365-371.[31] Zhang C, Kwak G, Park H G, et al. Light hydrocarbons to BTEX aromatics over hierarchical HZSM-5: Effects of alkali treatment on catalytic performance [J]. Microporous Mesoporous Mater, 2019, 276(10):292-301.[32] Sabarish R, Unnikrishnan G. Synthesis, characterization and catalytic activity of hierarchical ZSM-5 templated by carboxymethyl cellulose [J]. Powder Technol, 2017, 320(10):412-419.[33] Yu H, Li F, He W, et al. Synthesis of micro-mesoporous ZSM-5 zeolite with microcrystalline cellulose as co-template and catalytic cracking of polyolefin plastics [J]. RSC Adv, 2020, 10(37): 22126-22136.[34] 侯扬飞, 祝晓琳, 李春义. Ni/Mg复合改性对ZSM-5分子筛催化性能的影响 [J]. 炼油与化工, 2019, 30(5): 13-15.[35] Jin F, Zhang P, Wu G. Fundamental kinetics model of acidity-activity relation for ethylene oligomerization and aromatization over ZSM-5 zeolites [J]. Chem Eng Sci, 2021, 229(8):116114-116129.[36] Gao Y, Zheng B, Wu G, et al. Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization [J]. RSC Adv, 2016, 6(87): 83581-83588.[37] Gao P, Xu J, Qi G, et al. A Mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: Understanding the dehydrogenation process [J]. ACS Catal, 2018, 8(10): 9809-9820.[38] 张娜, 徐亚荣, 徐新良, 等. Zn/ZSM-5催化剂在甲醇制芳烃(MTA)反应中的失活与再生[J]. 天然气化工(C 1化学与化工), 2015, 40(6): 18-21.[39] Hu M, Wang C, Gao X, et al. Establishing a link between the dual cycles in methanol-to-olefins conversion on H-ZSM-5: Aromatization of cycloalkenes [J]. ACS Catal, 2020, 10(7): 4299-4305.[40] Li J, Wang L, Zhang D, et al. One-step synthesis of hierarchical ZSM-5 zeolites and their catalytic performance on the conversion of methanol to aromatics [J]. React Kinet Mech Cat, 2020, 130(1): 519-530.[41] Shoinkhorova T, Cordero L T, Ramirez A, et al. Highly selective and stable production of aromatics via high-pressure methanol conversion [J]. ACS Catal, 2021, 11(6): 3602-3613.[42] Liao Z, Xu T, Jiang Y, et al. Methanol to propylene over foam SiC-supported ZSM-5 catalyst: Performance of multiple reaction–regeneration cycles [J]. Ind Eng Chem Res, 2018, 58(1): 27-33.[43] Li H, Li X G, Xiao W D. Deactivation kinetics of individual C6-C9 aromatics′ generation from methanol over Zn and P co-modified HZSM-5[J]. RSC Adv, 2019, 9(39): 22327-22335.[44] 冯丽梅, 徐亚荣, 张力, 等. 甲醇芳构化反应的热力学研究 [J]. 石化技术与应用, 2017, 35(2): 101-105.[45] Huang X, Li H, Xiao W D, et al. Insight into the side reactions in methanol-to-olefin process over HZSM-5: A kinetic study [J]. Chem Eng Sci, 2016, 299(4):263-275.[46] Tian H, Zhang Z, Chang H, et al. Catalytic performance of imidazole modified HZSM-5 for methanol to aromatics reaction [J]. J Energy Chem, 2017, 26(3): 574-583.[47] 侯扬飞, 于明煊, 张娇玉, 等. 正戊烷和甲醇共芳构化反应中Zn/ZSM-5催化剂的失活研究 [J]. 石油炼制与化工, 2019, 50(9): 53-58.[48] Cordero L T, Martínez C, Aguayo A T, et al. Activation of n-pentane while prolonging HZSM-5 catalyst lifetime during its combined reaction with methanol or dimethyl ether[J]. Catal Today, 2022, 383(9):320-329.[49] Lai P C, Hsieh C Y, Chen C H, et al. The role of non-framework Lewis acidic Al species of alkali-treated HZSM-5 in methanol aromatization [J]. Catal, 2017, 7(9): 259-270.

备注/Memo

备注/Memo:
辽宁省科学技术厅项目(项目编号:20170540585);辽宁省教育厅项目(项目编号:L 2015296;L 2016018)。
更新日期/Last Update: 2023-07-10