|本期目录/Table of Contents|

[1]柳黄飞,张莉*,王久江,等.原位合成杂原子ZSM-11分子筛及其性能评价[J].石化技术与应用,2024,1:17-22.
 LIU Huang-fei,ZHANG Li,WANG Jiu-jiang,et al.In-situ synthesis of heteroatomic ZSM-11 zeolite and its catalytic performance evaluation[J].Petrochemical technology & application,2024,1:17-22.
点击复制

原位合成杂原子ZSM-11分子筛及其性能评价(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年1期
页码:
17-22
栏目:
出版日期:
2024-01-10

文章信息/Info

Title:
In-situ synthesis of heteroatomic ZSM-11 zeolite and its catalytic performance evaluation
文章编号:
1009-0045(2024)01-0017-06
作者:
柳黄飞张莉*王久江胡清勋孙雪芹杨一青刘宏海曹庚振
中国石油石油化工研究院 兰州化工研究中心,甘肃 兰州 730060
Author(s):
LIU Huang-feiZHANG LiWANG Jiu-jiangHU Qing-xunSUN Xue-qinYANG Yi-qingLIU Hong-haiCAO Geng-zhen
Lanzhou Petrochemical Research Center,Petrochemical Research Institute,PetroChina,Lanzhou 730060,China
关键词:
ZSM-11分子筛杂原子丙烯助剂丙烯收率原位合成法
Keywords:
ZSM-11 zeoliteheteroatompropylene additivespropylene yieldin-situ synthesis
分类号:
TE 624.9+5
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.01.0017
文献标识码:
B
摘要:
采用原位合成法制备了一系列含Fe质量分数不同的杂原子分子筛,利用X射线衍射仪、傅里叶红外光谱仪、X射线荧光光谱仪、扫描电子显微镜等对分子筛进行表征,考察了杂原子对分子筛结构的影响,并以杂原子分子筛为丙烯助剂活性组分制备催化剂,对催化剂性能进行评价。结果表明:杂原子的引入以及离子交换不会影响分子筛晶相;杂原子分子筛中Fe3+并未全部进入分子筛骨架中,一部分以四配位的形式进入分子筛骨架中,另一部分以六配位的形式存在于分子筛骨架之外;杂原子分子筛作为丙烯助剂活性组分时,所制备催化剂的原料油转化率和丙烯收率分别为80.21%,8.74%。
Abstract:
A series of heteroatom zeolites with different Fe contents were prepared by in-situ synthesis, and characterized by X-ray diffractometer, fourier transform infrared spectrometer, X-ray fluorescence spectrometer, scanning electron microscope, etc. The effects of heteroatoms on the structure of the zeolites were investigated, and catalysts containing heteroatom zeolites as the active components of the propylene additives were prepared and evaluated for the performance of the catalysts. The results showed that the introduction of heteroatoms and ion exchange did not affect the crystalline phase of the zeolites; the Fe3+ of heteroatom zeolites did not enter into the zeolite′s framework completely, but part of those entered into the zeolite′s framework and formed the tetracoordinated structure, and the other part of those existed outside of the framework and formed the sexadentate structure. When heteroatom zeolites were used as active components of propylene additives, the feedstock oil conversion rate and propylene yield on the prepared catalysts were 80.21% and 8.74%, respectively.

参考文献/References

[1] Maesen T L M, Schenk M, Vlugt T J H, et al. Differences between MFI-and MEL-type zeolites in paraffin hydrocracking[J]. Journal of Catalysis, 2001, 203(2): 281-291.[2] 尤晴. 杂原子beta分子筛的制备、孔道多级化及其催化氧化性能研究[D].西安:西北大学,2021.[3] Kokotailo G T, Chu P, Lawton S L, et al. Synthesis and structure of synthetic zeolite ZSM-11[J]. Nature, 1978, 275(5676): 119-120.[4] 郭新闻,刘毅慧,王祥生,等. 超细ZSM-11分子筛低温合成及表征[J].大连理工大学学报,2001(4):426-430.[5] 须沁华,于秋明.红外光谱法研究不同硅铝比的ZSM-5及ZSM-11分子筛的骨架振动[J].高等学校化学学报,1988(5):508-509.[6] Dey K P, Ghosh S, Naskar M K. A facile synthesis of ZSM-11 zeolite particles using rice husk ash as silica source[J]. Materials Letters, 2012, 87: 87-89.[7] Du T, Qu H, Liu Q, et al. Synthesis, activity and hydrophobicity of Fe-ZSM-5@ silicalite-1 for NH3-SCR[J]. Chemical Engineering Journal, 2015, 262: 1199-1207.[8] Reddy J S, Sivasanker S, Ratnasamy P. Hydroxylation of phenol over TS-2, a titanium silicate molecular sieve[J]. Journal of Molecular Catalysis, 1992, 71(3): 373-381.[9] Perego C, Carati A, Ingallina P, et al. Production of titanium containing molecular sieves and their application in catalysis[J]. Applied Catalysis (A:General), 2001, 221(1/2): 63-72.[10] Liu Z, Davis R J. Investigation of the structure of microporous Ti-Si mixed oxides by X-ray, UV reflectance, FT-Raman, and FT-IR spectroscopies[J]. The Journal of Physical Chemistry, 1994, 98(4): 1253-1261.[11] Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.[12] Zeng X, Wang Z, Ding J, et al. Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity[J]. Journal of Catalysis, 2019, 380: 9-20.[13] Sayehi M, Garbarino G, Delahay G, et al. Synthesis of high value-added Na-P 1 and Na-FAU zeolites using waste glass from fluorescent tubes and aluminum scraps[J]. Materials Chemistry and Physics, 2020, 248: 122903.[14] Meng B, Ren S, Liu X, et al. Synthesis of USY zeolite with a high mesoporous content by introducing Sn and enhanced catalytic performance[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 5712-5719.[15] 汪青松,李工,黄敏建.含杂原子硼ZSM-5分子筛的合成及对甲醇脱氢制甲醛的催化性能[J].工业催化,2013,21(10):57-62.[16] 秦静. 金属杂原子分子筛的制备、表征及催化性能研究[D].北京:北京化工大学,2015.[17] Meng B, Ren S, Li Z, et al. A facile organic-free synthesis of high silica zeolite Y with small crystal in the presence of Co2+[J]. Microporous and Mesoporous Materials, 2021, 323: 111248.[18] Ravi M, Sushkevich V L, Van Bokhoven J A. Towards a better understanding of Lewis acidic aluminium in zeolites[J]. Nature Materials, 2020, 19(10): 1047-1056.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2024-01-10