|本期目录/Table of Contents|

[1]马萍,和树立 a,陈述卫 b,等.负载型烯烃氢甲酰化催化剂研究进展[J].石化技术与应用,2024,1:75-80.
 MA Ping,HE Shu-li a,CHEN Shu-wei b,et al.Research progress of supported catalysts for hydroformylation of olefins to aldehyde[J].Petrochemical technology & application,2024,1:75-80.
点击复制

负载型烯烃氢甲酰化催化剂研究进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年1期
页码:
75-80
栏目:
出版日期:
2024-01-10

文章信息/Info

Title:
Research progress of supported catalysts for hydroformylation of olefins to aldehyde
文章编号:
1009-0045(2024)01-0075-06
作者:
马萍1和树立2 a陈述卫2 b马好文1*谢元1孙利民1
1.中国石油石油化工研究院 兰州化工研究中心,甘肃 兰州 730060;2.中国石油广东石化公司 a.科技发展部,b.炼油生产二部,广东 揭阳 522000
Author(s):
MA Ping1HE Shu-li2 aCHEN Shu-wei2 bMA Hao-wen1XIE Yuan1SUN Li-min1
1.Lanzhou Petrochemical Research Center,Petrochemical Research Institute,PetroChina,Lanzhou 730060,China;2.a.Ministry of Science and Technology Development,b. Refining Production Department II,Guangdong Petrochemical Company,PetroChina,Jieyang 522000,China
关键词:
烯烃氢甲酰化负载型催化剂配合物纳米粒子单原子
Keywords:
olefinhydroformylationsupported catalystcoordination compoundnanoparticlessingle-atom
分类号:
TQ 215
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.01.0075
文献标识码:
A
摘要:
对负载型配合物催化剂、负载型纳米粒子催化剂以及负载型单原子催化剂的研究进展及其在烯烃氢甲酰化制醛反应中的应用进行了综述,对通过调变载体性质、助剂种类、活性组分粒径等方式改善负载型催化剂的性能进行了分析,并对烯烃氢甲酰化催化剂的研究方向进行了展望。指出降低催化剂中金属Rh的含量,提高负载型催化剂的性能,并将它们应用到工业生产中,是当下和未来的努力方向。
Abstract:
The research progress of supported complex catalysts, supported nanoparticle catalysts, and supported single-atom catalysts and their applications in the hydroformylation of olefins to aldehydes were reviewed, the improvement of the performance of supported catalysts by modifying the characteristic of the support, the type of the additive, and the particle size of the active component were analyzed, and the research direction of the catalysts for hydroformylation of olefins were also prospected. It was pointed out that reducing the content of Rh in catalysts and improving the performance of supported catalysts and applying them to industrial production were the present and future direction.

参考文献/References

[1] 王彬. 新型多相烯烃氢甲酰化催化材料的研究[D].北京:北京化工大学,2015. [2] 谭明慧. 基催化材料的制备及其烯烃氢甲酰化反应催化性能研究[D]. 青岛:中国石油大学(华东), 2016.[3] Wei Z, He D. Anchoring RhCl(CO)(PPh3)2 to -PrPPh2 modified MCM-41 as effective catalyst for 1-octene hydroformylation[J]. Catalysis Letters, 2009, 127(3/4):437-443.[4] Marras F, Wang J, Coppens M O, et al. Ordered mesoporous materials as solid supports for rhodium–diphosphine catalysts with remarkable hydroformylation activity[J]. Chemical Communications, 2010, 46(35):6587-6589.[5] Marras F, Kluwer A, Siekierzycka J, et al. Phosphorus ligand imaging with two-photon fluorescence spectroscopy: Towards rational catalyst immobilization[J]. Angewandte Chemie International Edition, 2010, 122(32):5612-5616.[6] Zhang H, Qiu J, Liang C, et al. A novel approach to Co/CNTs catalyst via chemical vapor deposition of organometallic compounds[J]. Catalysis Letters, 2005, 101(3):211-214.[7] Wei B , Liu X , Deng Y, et al. Efficient and stable Co/β-Mo2C catalyst for hydroformylation[J]. ACS Catalysis, 2021, 11(23):14319-14327.[8] Li P, Kawi S. SBA-15-based polyamidoamine dendrimer tethered Wilkinson′s rhodium complex for hydroformylation of styrene[J]. Journal of Catalysis, 2008, 257(1):23-31.[9] Chen M, Gopta G, Ordonez C W, et al. Intermetallic nanocatalyst for highly active heterogeneous hydroformylation[J]. Journal of the American Chemical Society, 2021, 143(49):20907-20915.[10] Wang H, Yuan H, Chen X , et al. A highly active N-doped carbon supported CoFe alloy catalyst for hydroformylation of C8 olefins[J]. The Journal of Physical Chemistry C, 2022, 126(1): 273-281.[11] Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis[J]. Nature Reviews Chemistry, 2018(2):65-81.[12] Li C, Li Y, Lu L, et al. Single atom dispersed Rh-biphephos & PPh3@porous organic copolymers: Highly efficient catalysts for continuous fixed-bed hydroformylation of propene[J]. Green Chemistry, 2016(18): 2995-3005.[13] Wang L , Zhang W , Wang S , et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst[J]. Nature Communications, 2016(7):1:4036.[14] Qiao B, Li T, Chen F, et al. Styrene hydroformylation with in situ hydrogen: Regioselectivity control by coupling with the low-temperature water-gas shift reaction[J]. Angewandte Chemie International Edition, 2020, 59(19): 7430-7434.[15] Rui L, Li T, Matsumura D, et al. Hydroformylation of olefins by a rhodium single‐atom catalyst with activity comparable to RhCl(PPh3)3[J]. Angewandte Chemie International Edition, 2016, 55(52):16054-16058.[16] Roberto, Giordano, Philippe, et al. Preparation of rhodium catalysts supported on carbon nanotubes by a surface mediated organometallic reaction[J]. European Journal of Inorganic Chemistry, 2003(4): 610-617.[17] Gao R, Tan C D, Baker R. Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts[J]. Catalysis Today, 2001, 65(1):19-29. [18] Liu X, Hu B, Fujimoto K, et al. Hydroformylation of olefins by Au/Co3O4 catalysts[J]. Applied Catalysis B(Environmental), 2009, 92(3/4):411-421.[19] Liu B, Huang N, Wang Y, et al. Promotion of inorganic phosphorus on Rh catalysts in styrene hydroformylation: Geometric and electronic effects[J]. ACS Catalysis, 2021, 11(3):1787-1796.[20] Huang N, Liu B, Lan X, et al. Insights into the bimetallic effects of a RhCo catalyst for ethene hydroformylation: Experimental and DFT investigations[J]. Industrial & Engineering Chemistry Research, 2020, 59(42):18771-18780.[21] Liu B, Wang Y, Huang N, et al. Activity promotion of Rh 8–xCoxP4 bimetallic phosphides in styrene hydroformylation: Dual influence of adsorption and surface reaction[J]. ACS Catalysis, 2021, 11(15): 9850-9859.[22] Brundage M A , Balakos M W , Chuang S . LHHW and PSSA kinetic analysis of rates and adsorbate coverages in CO/H2/C2H4 reactions on Mn-Rh/SiO2[J]. Journal of Catalysis, 1998, 173(1):122-133.[23] Lee S, Patra A, Christopher P, et al. Theoretical study of ethylene hydroformylation on atomically dispersed Rh/Al2O3 catalysts: Reaction mechanism and influence of the ReOx promoter[J]. ACS Catalysis, 2021, 11(15):9506-9518.[24] Hanaoka T, Arakawa H, Matsuzaki T, et al. Ethylene hydroformylation and carbon monoxide hydrogenation over modified and unmodified silica supported rhodium catalysts[J]. Catalysis Today, 2000, 58(4):271-280.[25] Sakauchi J, Sakagami H, Takahashi N, et al. Comparison of dinitrodiamminepalladium with palladium nitrate as a precursor for Pd/SiO2 with respect to catalytic behavior for ethane hydroformylation and carbon monoxide hydrogenation[J]. Catalysis Letters, 2005, 99(3/4):257-261.

备注/Memo

备注/Memo:
中国石油石油化工研究院资助项目(项目编号:21-CB-09-01)
更新日期/Last Update: 2024-01-10