[1] Ye R P, Ding J, Gong W B, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10(1): 5698-5713.[2] Jiang X, Nie X W, Guo X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034.[3] Park K, Gunasekar H G, Prakash N, et al. A highly efficient heterogenized iridium complex for the catalytic hydrogenation of carbon dioxide to formate[J]. ChemSusChem, 2015, 8(20): 3410-3413.[4] Dai C Y, Zhao X B, Hu B R, et al. Hydrogenation of CO2 to aromatics over Fe-K/alkaline Al2O3 and P/ZSM-5 tandem catalysts[J]. Industrial & Engineering Chemistry Research, 2020, 59(43): 1914-1920.[5] Gao P, Li S G, Bu X N, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nature Chemical, 2017, 9(10): 1019-1024.[6] 徐敏杰, 朱明辉, 陈天元,等. CO2高值化利用: CO2加氢制甲醇催化剂研究进展[J]. 化工进展, 2021, 40(2): 565-576.[7] 马仁娟, 刘玉敏, 孙瑞钰,等. 焙烧温度对HZSM-5催化剂催化甲醇制汽油反应性能的影响[J]. 石油炼制与化工, 2016, 47(7): 71-75.[8] 邵光涛. 煤炭间接液化汽油组分与甲醇制丙烯副产类汽油调合研究[J].石油炼制与化工,2018, 49(1): 75-78.[9] 叶晓东, 于杨, 邱祥海,等. 铜锌沉淀洗涤对甲醇合成催化剂性能的影响[J]. 石油化工, 2022, 51(12): 1381-1387.[10] Chu Z, Chen H B, Yu Y, et al. Surfactant-assisted preparation of Cu/ZnO/Al2O3 catalyst for methanol synthesis from syngas[J]. Journal of Molecular Catalysis A(Chemical), 2013, 366: 48-53.[11] Jamil T, Piscina R P, Fierro G L J, et al. Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: Influence of support and promoter[J]. Applied Catalysis B(Environmental), 2001, 29(3): 207-215.[12] 张明宇. CO2加氢合成甲醇Cu-Zn-ZrO2催化剂研究[D]. 昆明:昆明理工大学, 2015.[13] Guil-López R, Mota N, Llorente J, et al. Methanol synthesis from CO2: A review of the latest developments in heterogeneous catalysis[J]. Materials, 2019, 12(23): 3902-3926.[14] Li Z Q, Du T, Li Y N, et al. Water- and reduction-free preparation of oxygen vacancy rich Cu-ZnO-ZrO2 catalysts for promoted methanol synthesis from CO2[J]. Fuel, 2022, 322: 124264.[15] Singh R, Tripathi K, Pant K K. Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO2 catalyst during CO2 hydrogenation[J]. Fuel, 2021, 303: 121289-121299.[16] 崔晓静, 颜丽红, 王慧芳, 等. CO2加氢制甲醇铜基催化剂: 分散度调控选择性[J]. 高校化学工程学报, 2022, 36(4): 562-569.[17] Ren S J, Fan X, Shang Z Y, et al. Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation[J]. Journal of CO2 Utilization, 2020, 36: 82-95.[18] Jiang Y, Yang H Y, Gao P, et al. Slurry methanol synthesis from CO2 hydrogenation over micro-spherical SiO2 support Cu/ZnO catalysts[J]. Journal of CO2 Utilization, 2018, 26: 642-651.[19] Sun Y H, Huang C L, Chen L M, et al. Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions[J]. Journal of CO2 Utilization, 2020, 37: 55-64.[20] Chen K, Fang H H, Wu S S, et al. CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu-LaOx interfaces[J]. Applied Catalysis B: Environmental, 2019, 251: 119-129.[21] Han J, Yu J, Xue Z T, et al. Highly efficient CO2 hydrogenation to methanol over Cu-Ce1-xZrxO2 catalysts prepared by an eco-friendly and facile solid-phase grinding method[J]. Renewable Energy, 2024, 222: 119951.[22] Chen D W, Mao D S, Wang G, et al. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2 catalyst prepared by polymeric precursor method[J]. Journal of Sol-Gel Science and Technology, 2019, 89: 686-699.[23] Jangam A, Hongmanorom P, Ming H W, et al. CO2 Hydrogenation to methanol over partially reduced Cu-SiO2P catalysts: The crucial role of hydroxyls for methanol selectivity[J]. ACS Applied Energy Materials, 2021, 4(11): 12149-12162.[24] Fang X, Men Y H, Wu F, et al. Moderate-pressure conversion of H2 and CO2 to methanol via adsorption enhanced hydrogenation international[J]. Journal of Hydrogen Energy, 2019, 44(39): 21913-21925.[25] Liu T K, Xu D, Wu D D, et al. Spinel ZnFe2O4 regulates copper sites for CO2 hydrogenation to methanol[J]. ACS Sustainable Chemistry Engineering, 2021, 9(11): 4033-4041.[26] Gao J, Song F J, Li Y. Cu2 in nanoalloy enhanced performance of Cu/ZrO2 catalysts for the CO2 hydrogenation to methanol[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12331-12337.[27] Han C Y, Zhang H T, Li C M, et al. The regulation of Cu-ZnO interface by Cu-Zn bimetallic metal organic framework-templated strategy for enhanced CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2022, 643: 118805-118814.[28] Kattel S, Liu P, Chen G J. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface[J]. Journal of the American Chemical Society, 2017, 139(29): 9739-9754.[29] Cui Z L, Meng S Y, Yi Y H, et al. Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: Insights into the reaction mechanism[J]. ACS Catalysis, 2022, 12(2): 1326-1337.[30] Hu?觢 M, Kopa?觬 D, ?譒tefan?觬i?觬 S N, et al. Unravelling the mechanisms of CO2 hydrogenation to methanol on Cu-based catalysts using first-principles multiscale modelling and experiments[J]. Catalysis Science & Technology, 2017, 7(24): 5900-5913.[31] Stangeland K, Li H L, Yu Z X. Thermodynamic analysis of chemical and phase equilibria in CO2 hydrogenation to methanol, dimethyl ether and higher alcohols[J]. Industrial & Engineering Chemistry Research, 2018, 57(11): 4081-4094.[32] Wang Y H, Gao W G, Li K Z, et al. Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu-ZnO-ZrO2[J]. Chem, 2020, 6: 419-430.[33] Wu W L, Wang Y N, Luo L, et al. CO2 hydrogenation over copper/ZnO single-atom catalysts: Water-promoted transient synthesis of methanol[J]. Angewandte Chemie International Edition, 2022, 61(48): 1-24[34] Gao P, Zhong L S, Zhang L N, et al. Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catalysis Science & Technology, 2015, 5: 4365-4377.[35] Peláez R, Bryce E, Marín P, et al. Catalyst deactivation in the direct synthesis of dimethyl ether from syngas over CuO/ZnO/Al2O3 and γ-Al2O3 mechanical mixtures[J]. Fuel Processing Technology, 2018, 179: 378-386.[36] Matthias B F, David S, Nikolas J, et al. Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts[J]. Applied Catalysis A, 2015, 502: 262-270.[37] Wu J G, Saito M, Takeuchi M, et al. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed[J]. Applied Catalysis A, 2001, 218: 235-240.[38] Xiong S H, Lian Y, Xie H, et al. Hydrogenation of CO2 to methanol over Cu/Zn/Cr catalyst[J]. Fuel, 2019, 256: 115975.[39] Cui X J, Yan W J, Yang H Y, et al.Preserving the active Cu-ZnO interface for selective hydrogenation of CO2 to dimethyl ether and methanol[J]. ACS Sustainable Chemistry Engineering, 2021, 9(7): 2661-2672.[40] Li H J, Wang L, Gao X H, et al. Cu/ZnO/Al2O3 catalyst modulated by zirconia with enhanced performance in CO2 hydrogenation to methanol[J]. Industrial & Engineering Chemistry Research, 2022, 61(29): 10446-10454.[41] Tan M H, Zhang T, Tan Y S, et al. Probing hydrophobization of a Cu/ZnO catalyst for suppression of water-gas shift reaction in syngas conversion[J]. ACS Catalysis, 2021, 11 (8): 4633-4643.[42] Ding M Y, Xu Y F, Li X Y, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science, 2021, 371(6529): 610-613.[43] Liu Z, An X Q, Song M, et al. Dry gel assisting crystallization of bifunctional CuO-ZnO-Al2O3/SiO2-Al2O3 catalysts for CO2 hydrogenation[J]. Biomass Bioenergy, 2022, 163(2): 106525-106533.[44] Herrero R Y, Ullah A. Hydrophobic polyhedral oligomeric silsesquioxane support enhanced methanol production from CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2023, 15 (11): 14399-14414.[45] Li H J, Fang W, Wang L X, et al. Physical regulation of copper catalyst with a hydrophobic promoter for enhancing CO2 hydrogenation to methanol[J]. The Innovation, 2023, 4(4): 100445-100451.[46] Zachopoulos A, Heracleous E. Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: A thermodynamic analysis[J]. Journal of CO2 Utilization, 2017, 21: 360-367.[47] Arora A, Iyer S S, Bajaj I, et al. Optimal methanol production via sorption-enhanced reaction process[J]. Industrial & Engineering Chemistry Research, 2018,57(42):14143-14161.[48] Yue W Z, Li Y H, Wei W, et al. Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor[J]. AngewandteChemie International Edition, 2021, 60(33): 18289-18294.[49] Li Z T, Tsotsis T T. Methanol synthesis in a high-pressure membrane reactor with liquid sweep[J]. Journal of Membrane Science, 2019, 570: 103-111.[50] Zebarjad S F, Hu S, Li Z T, et al. Experimental investigation of the application of ionic liquids to methanol synthesis in membrane reactors[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11811-11820.