|本期目录/Table of Contents|

[1]何琴,李中付,王群斐,等.二氧化碳加氢制甲醇Cu基催化剂疏水改性研究进展[J].石化技术与应用,2024,2:149-155.
 HE Qin,LI Zhong-fu,WANG Qun-fei,et al.Research progress on hydrophobic modification of Cu-based catalysts for hydrogenation of carbon dioxide to methanol[J].Petrochemical technology & application,2024,2:149-155.
点击复制

二氧化碳加氢制甲醇Cu基催化剂疏水改性研究进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年2期
页码:
149-155
栏目:
出版日期:
2024-03-10

文章信息/Info

Title:
Research progress on hydrophobic modification of Cu-based catalysts for hydrogenation of carbon dioxide to methanol
文章编号:
1009-0045(2024)02-0149-07
作者:
何琴1李中付12王群斐1张景岩12刘从华12*
1.山东理工大学 材料科学与工程学院, 山东 淄博 255000;2.山东省高校稀土催化新材料工程研究中心, 山东 淄博 255000
Author(s):
HE Qin1LI Zhong-fu12WANG Qun-fei1ZHANG Jing-yan12LIU Cong-hua12
1.School of Materials Science and Engineering,Shandong University of Technology,Zibo 255000,China;2.Shandong Collegial Engineering Research Center of Novel Rare Earth Catalysis Materials (CREC), Zibo 255000, China
关键词:
Cu基催化剂甲醇二氧化碳加氢疏水改性水热稳定性
Keywords:
Cu-based catalystmethanolcarbon dioxide hydrogenationhydrophobic modificationhydrothermal stability
分类号:
TQ 314.24+2;TQ 223.12+1
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.02.0149
文献标识码:
A
摘要:
综述Cu基催化剂研究现状和二氧化碳加氢制甲醇的反应机理,分析在二氧化碳反应过程中水对催化剂的影响,从催化剂组分、微观结构以及反应装置设计等方面阐述Cu基催化剂耐水热稳定性的改性技术,并指出优化制备工艺、调控反应工艺、开发疏水改性技术、开发新型反应器等是解决Cu基催化剂失活的改进方向。
Abstract:
The research status of Cu-based catalysts and the reaction mechanism of carbon dioxide hydrogenation to methanol were reviewed with 50 references. The effect of water on catalysts during carbon dioxide reaction was analyzed, and the modification technology of Cu-based catalysts for hydrothermal stability was elaborated in terms of the design of catalyst components, the design of microstructures, and the design of the reaction device. It was also pointed out that the optimization of the preparation process, and the regulation of the reaction process, and the development of hydrophobic modification technology, and the development of new types of reactor were the directions of improvement for the solution of the deactivation of Cu-based catalysts.

参考文献/References

[1] Ye R P, Ding J, Gong W B, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10(1): 5698-5713.[2] Jiang X, Nie X W, Guo X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034.[3] Park K, Gunasekar H G, Prakash N, et al. A highly efficient heterogenized iridium complex for the catalytic hydrogenation of carbon dioxide to formate[J]. ChemSusChem, 2015, 8(20): 3410-3413.[4] Dai C Y, Zhao X B, Hu B R, et al. Hydrogenation of CO2 to aromatics over Fe-K/alkaline Al2O3 and P/ZSM-5 tandem catalysts[J]. Industrial & Engineering Chemistry Research, 2020, 59(43): 1914-1920.[5] Gao P, Li S G, Bu X N, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nature Chemical, 2017, 9(10): 1019-1024.[6] 徐敏杰, 朱明辉, 陈天元,等. CO2高值化利用: CO2加氢制甲醇催化剂研究进展[J]. 化工进展, 2021, 40(2): 565-576.[7] 马仁娟, 刘玉敏, 孙瑞钰,等. 焙烧温度对HZSM-5催化剂催化甲醇制汽油反应性能的影响[J]. 石油炼制与化工, 2016, 47(7): 71-75.[8] 邵光涛. 煤炭间接液化汽油组分与甲醇制丙烯副产类汽油调合研究[J].石油炼制与化工,2018, 49(1): 75-78.[9] 叶晓东, 于杨, 邱祥海,等. 铜锌沉淀洗涤对甲醇合成催化剂性能的影响[J]. 石油化工, 2022, 51(12): 1381-1387.[10] Chu Z, Chen H B, Yu Y, et al. Surfactant-assisted preparation of Cu/ZnO/Al2O3 catalyst for methanol synthesis from syngas[J]. Journal of Molecular Catalysis A(Chemical), 2013, 366: 48-53.[11] Jamil T, Piscina R P, Fierro G L J, et al. Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: Influence of support and promoter[J]. Applied Catalysis B(Environmental), 2001, 29(3): 207-215.[12] 张明宇. CO2加氢合成甲醇Cu-Zn-ZrO2催化剂研究[D]. 昆明:昆明理工大学, 2015.[13] Guil-López R, Mota N, Llorente J, et al. Methanol synthesis from CO2: A review of the latest developments in heterogeneous catalysis[J]. Materials, 2019, 12(23): 3902-3926.[14] Li Z Q, Du T, Li Y N, et al. Water- and reduction-free preparation of oxygen vacancy rich Cu-ZnO-ZrO2 catalysts for promoted methanol synthesis from CO2[J]. Fuel, 2022, 322: 124264.[15] Singh R, Tripathi K, Pant K K. Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over Cu/CeO2 catalyst during CO2 hydrogenation[J]. Fuel, 2021, 303: 121289-121299.[16] 崔晓静, 颜丽红, 王慧芳, 等. CO2加氢制甲醇铜基催化剂: 分散度调控选择性[J]. 高校化学工程学报, 2022, 36(4): 562-569.[17] Ren S J, Fan X, Shang Z Y, et al. Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation[J]. Journal of CO2 Utilization, 2020, 36: 82-95.[18] Jiang Y, Yang H Y, Gao P, et al. Slurry methanol synthesis from CO2 hydrogenation over micro-spherical SiO2 support Cu/ZnO catalysts[J]. Journal of CO2 Utilization, 2018, 26: 642-651.[19] Sun Y H, Huang C L, Chen L M, et al. Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions[J]. Journal of CO2 Utilization, 2020, 37: 55-64.[20] Chen K, Fang H H, Wu S S, et al. CO2 hydrogenation to methanol over Cu catalysts supported on La-modified SBA-15: The crucial role of Cu-LaOx interfaces[J]. Applied Catalysis B: Environmental, 2019, 251: 119-129.[21] Han J, Yu J, Xue Z T, et al. Highly efficient CO2 hydrogenation to methanol over Cu-Ce1-xZrxO2 catalysts prepared by an eco-friendly and facile solid-phase grinding method[J]. Renewable Energy, 2024, 222: 119951.[22] Chen D W, Mao D S, Wang G, et al. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2 catalyst prepared by polymeric precursor method[J]. Journal of Sol-Gel Science and Technology, 2019, 89: 686-699.[23] Jangam A, Hongmanorom P, Ming H W, et al. CO2 Hydrogenation to methanol over partially reduced Cu-SiO2P catalysts: The crucial role of hydroxyls for methanol selectivity[J]. ACS Applied Energy Materials, 2021, 4(11): 12149-12162.[24] Fang X, Men Y H, Wu F, et al. Moderate-pressure conversion of H2 and CO2 to methanol via adsorption enhanced hydrogenation international[J]. Journal of Hydrogen Energy, 2019, 44(39): 21913-21925.[25] Liu T K, Xu D, Wu D D, et al. Spinel ZnFe2O4 regulates copper sites for CO2 hydrogenation to methanol[J]. ACS Sustainable Chemistry Engineering, 2021, 9(11): 4033-4041.[26] Gao J, Song F J, Li Y. Cu2 in nanoalloy enhanced performance of Cu/ZrO2 catalysts for the CO2 hydrogenation to methanol[J]. Industrial & Engineering Chemistry Research, 2020, 59(27): 12331-12337.[27] Han C Y, Zhang H T, Li C M, et al. The regulation of Cu-ZnO interface by Cu-Zn bimetallic metal organic framework-templated strategy for enhanced CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2022, 643: 118805-118814.[28] Kattel S, Liu P, Chen G J. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface[J]. Journal of the American Chemical Society, 2017, 139(29): 9739-9754.[29] Cui Z L, Meng S Y, Yi Y H, et al. Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: Insights into the reaction mechanism[J]. ACS Catalysis, 2022, 12(2): 1326-1337.[30] Hu?觢 M, Kopa?觬 D, ?譒tefan?觬i?觬 S N, et al. Unravelling the mechanisms of CO2 hydrogenation to methanol on Cu-based catalysts using first-principles multiscale modelling and experiments[J]. Catalysis Science & Technology, 2017, 7(24): 5900-5913.[31] Stangeland K, Li H L, Yu Z X. Thermodynamic analysis of chemical and phase equilibria in CO2 hydrogenation to methanol, dimethyl ether and higher alcohols[J]. Industrial & Engineering Chemistry Research, 2018, 57(11): 4081-4094.[32] Wang Y H, Gao W G, Li K Z, et al. Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu-ZnO-ZrO2[J]. Chem, 2020, 6: 419-430.[33] Wu W L, Wang Y N, Luo L, et al. CO2 hydrogenation over copper/ZnO single-atom catalysts: Water-promoted transient synthesis of methanol[J]. Angewandte Chemie International Edition, 2022, 61(48): 1-24[34] Gao P, Zhong L S, Zhang L N, et al. Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catalysis Science & Technology, 2015, 5: 4365-4377.[35] Peláez R, Bryce E, Marín P, et al. Catalyst deactivation in the direct synthesis of dimethyl ether from syngas over CuO/ZnO/Al2O3 and γ-Al2O3 mechanical mixtures[J]. Fuel Processing Technology, 2018, 179: 378-386.[36] Matthias B F, David S, Nikolas J, et al. Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts[J]. Applied Catalysis A, 2015, 502: 262-270.[37] Wu J G, Saito M, Takeuchi M, et al. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed[J]. Applied Catalysis A, 2001, 218: 235-240.[38] Xiong S H, Lian Y, Xie H, et al. Hydrogenation of CO2 to methanol over Cu/Zn/Cr catalyst[J]. Fuel, 2019, 256: 115975.[39] Cui X J, Yan W J, Yang H Y, et al.Preserving the active Cu-ZnO interface for selective hydrogenation of CO2 to dimethyl ether and methanol[J]. ACS Sustainable Chemistry Engineering, 2021, 9(7): 2661-2672.[40] Li H J, Wang L, Gao X H, et al. Cu/ZnO/Al2O3 catalyst modulated by zirconia with enhanced performance in CO2 hydrogenation to methanol[J]. Industrial & Engineering Chemistry Research, 2022, 61(29): 10446-10454.[41] Tan M H, Zhang T, Tan Y S, et al. Probing hydrophobization of a Cu/ZnO catalyst for suppression of water-gas shift reaction in syngas conversion[J]. ACS Catalysis, 2021, 11 (8): 4633-4643.[42] Ding M Y, Xu Y F, Li X Y, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science, 2021, 371(6529): 610-613.[43] Liu Z, An X Q, Song M, et al. Dry gel assisting crystallization of bifunctional CuO-ZnO-Al2O3/SiO2-Al2O3 catalysts for CO2 hydrogenation[J]. Biomass Bioenergy, 2022, 163(2): 106525-106533.[44] Herrero R Y, Ullah A. Hydrophobic polyhedral oligomeric silsesquioxane support enhanced methanol production from CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2023, 15 (11): 14399-14414.[45] Li H J, Fang W, Wang L X, et al. Physical regulation of copper catalyst with a hydrophobic promoter for enhancing CO2 hydrogenation to methanol[J]. The Innovation, 2023, 4(4): 100445-100451.[46] Zachopoulos A, Heracleous E. Overcoming the equilibrium barriers of CO2 hydrogenation to methanol via water sorption: A thermodynamic analysis[J]. Journal of CO2 Utilization, 2017, 21: 360-367.[47] Arora A, Iyer S S, Bajaj I, et al. Optimal methanol production via sorption-enhanced reaction process[J]. Industrial & Engineering Chemistry Research, 2018,57(42):14143-14161.[48] Yue W Z, Li Y H, Wei W, et al. Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor[J]. AngewandteChemie International Edition, 2021, 60(33): 18289-18294.[49] Li Z T, Tsotsis T T. Methanol synthesis in a high-pressure membrane reactor with liquid sweep[J]. Journal of Membrane Science, 2019, 570: 103-111.[50] Zebarjad S F, Hu S, Li Z T, et al. Experimental investigation of the application of ionic liquids to methanol synthesis in membrane reactors[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11811-11820.

备注/Memo

备注/Memo:
淄博市重点研发(校城融合项目)资助项目(项目编号:2021 SNPT 0042)
更新日期/Last Update: 2024-03-10