|本期目录/Table of Contents|

[1]许绍东,代恩东,魏文,等.浆态床重石脑油加工路线的模拟优化及应用[J].石化技术与应用,2024,3:205-208.
 XU Shao-dong,DAI En-dong,WEI Wen,et al.Simulation optimization and application of processing route ofheavy naphtha from slurry bed[J].Petrochemical technology & application,2024,3:205-208.
点击复制

浆态床重石脑油加工路线的模拟优化及应用(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年3期
页码:
205-208
栏目:
出版日期:
2024-05-10

文章信息/Info

Title:
Simulation optimization and application of processing route ofheavy naphtha from slurry bed
文章编号:
1009-0045(2024)03-0205-04
作者:
许绍东1代恩东1魏文1刘亭亭12*高伟23崔登科2毛玲娟14李伟龙5
1.浙江石油化工有限公司,浙江 舟山 316000;2.浙江省绿色石化技术创新中心,浙江 宁波 315048;3.浙江大学 工程师学院,浙江 杭州 310000;4.华北电力大学 能源动力与机械工程学院,北京 102208;5.黄河三角洲京博化工研究院有限公司,山东 滨州 256603
Author(s):
XU Shao-dong1DAI En-dong1WEI Wen1LIU Ting-ting12GAO Wei23CUI Deng-ke2MAO Ling-juan14LI Wei-long5
1.Zhejiang Petroleum & Chemical Co Ltd,Zhoushan 316000,China;2.Zhejiang Provincial Innovation Center of Green Petrochemical Technology (ZGPT),Ningbo 315048,China;3.School of Engineers of Zhejiang University,Hangzhou 310000,China;4.Energy,Power and Mechani
关键词:
浆态床渣油加氢装置重石脑油石脑油加氢装置柴油加氢裂化装置模拟优化
Keywords:
the slurry bed residue hydrogenation unitheavy naphthanaphtha hydrogenation unitdiesel hydrocracking unitsimulation and optimization
分类号:
TE 624
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.03.0205
文献标识码:
B
摘要:
利用英国KBC公司开发的NHTR-SIM和HCR-SIM流程模拟软件分别模拟优化了石脑油加氢装置和柴油加氢裂化装置的加工全流程,提出了将浆态床重石脑油由全部掺炼于350万t/a柴油加氢裂化装置改为全部掺炼于360万t/a石脑油加氢装置,再进入连续重整装置的加工优化方案。结果表明:在模拟石脑油加氢装置掺炼浆态床重石脑油时,产品精制重石脑油的含硫、氮量分别为0.37,0.42 μg/g,均满足重整装置进料小于0.5 μg/g的指标要求,该方案可行;优化实施后,虽然该方案仅协同运行半年多,共加工浆态床重石脑油20.47万t,促进柴油组分原料加工量提升了17.82万t,但为公司2022年度综合创效达7 928.3万元。
Abstract:
The NHTR-SIM and HCR-SIM process simulation software developed by KBC company of UK were used to simulate and optimize the whole process of naphtha hydrogenation unit and diesel hydrocracking unit respectively. The processing optimization scheme of slurry bed heavy naphtha from all mixed in 3.5 Mt/a diesel hydrocracking unit to all mixed in 3.6 Mt/a naphtha hydrogenation unit, and then into the continuous reforming unit was proposed. The results showed that when the slurry bed heavy naphtha was blended in the simulated naphtha hydrogenation unit, the sulfur and nitrogen contents of the refined heavy naphtha were 0.37, 0.42 μg/g, respectively, which met the requirements of the reforming unit feed less than 0.5 μg/g, and the scheme was feasible. After the optimization and implementation, although the scheme had only been operated collaboratively for more than half a year, a total of 204.7 kt of slurry bed heavy naphtha had been processed, and the amount of raw material processing of diesel components increased by 178.2 kt, it resulted in the company′s comprehensive benefit increment of 79.283 million yuan in 2022.

参考文献/References

[1] 邵志才.浆态床渣油加氢技术现状与展望[J].石油炼制与化工,2022,53(11):17-23. [2] Castaneda L C,Munoz J A D,Ancheyta J.Combined process schemes for upgrading of heavy petroleum[J].Fuel,2012(2):100110-100127.[3] 周振宇,景晓,岳志华,等.浆态床渣油加氢装置掺炼乙烯焦油的运行分析[J].石油炼制与化工,2023,54(9):72-76.[4] 刘文辉,齐雪冰,徐洪坤,等.催化裂化汽油作为重整装置原料的应用[J].化工管理,2019(7):124-126.[5] 谢雪治.对比探讨加氢裂化技术的发展[J].广州化工,2014(18):25-28.[6] 高攀,钟湘生,常春梅.大型化混合柴油加氢裂化装置运行优化及实践[J].当代化工,2022,51(12):3013-3020.[7] 代恩东,刘亭亭,毛玲娟,等.半再生重整装置流程模拟及运行优化[J].石化技术与应用,2022,40(3):210-215.[8] 毛玲娟,代恩东,钟湘生,等.连续重整装置反应器操作条件优化研究[J].石化技术与应用,2023,53(4):13-16.

备注/Memo

备注/Memo:
浙江石化科研基金资助项目(项目编号:ZSH-RD-23-025;ZSH-RD-23-026)
更新日期/Last Update: 2024-05-10