|本期目录/Table of Contents|

[1]易天立,王琦,桂薇.催化裂解制低碳烯烃工艺及催化剂研究进展[J].石化技术与应用,2024,4:306-313.
 YI Tian-li,WANG Qi,GUI Wei.Advances in catalytic cracking technology and catalyst for producing low carbon olefin[J].Petrochemical technology & application,2024,4:306-313.
点击复制

催化裂解制低碳烯烃工艺及催化剂研究进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年4期
页码:
306-313
栏目:
出版日期:
2024-07-10

文章信息/Info

Title:
Advances in catalytic cracking technology and catalyst for producing low carbon olefin
文章编号:
1009-0045(2024)04-0306-08
作者:
易天立1王琦2桂薇3
1.华南理工大学 环境与能源学院,广东 广州 510006;2.黄河河口海岸科学研究院,山东 东营 257091;3.连云港沃利工程技术有限公司上海分公司,上海 200000
Author(s):
YI Tian-li1 WANG Qi2 GUI Wei3
1.College of Environment and Energy, South China University of Technology, Guangzhou 510006, China;2.Yellow River Estuary Coastal Science Research Institute, Dongying 257091, China;3.Shanghai Branch of Lianyungang Wally Engineering Technology Co Ltd, Sh
关键词:
催化裂解低碳烯烃轻油重油催化剂反应机理
Keywords:
catalytic cracking low carbon olefin light oilheavy oilcatalyst reaction mechanism
分类号:
TQ 221.2;TQ 426
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.04.0306
文献标识码:
A
摘要:
综述了国内外催化裂解制低碳烯烃工艺的特点,阐述了催化裂解制低碳烯烃催化剂以及反应机理,指出开发多功能复合活性组元催化剂、创新催化裂解反应器型式、优化催化裂解工艺是未来催化裂解技术发展的3个方向。
Abstract:
The characteristics of catalytic cracking to produce low carbon olefin at present were reviewed. The catalyst and reaction mechanism of catalytic cracking to produce low carbon olefin were described. The development of multi-functional composite active component catalyst, innovative catalytic cracking reactor type and optimization of catalytic cracking process were proposed as three directions for the development of catalytic cracking technology in the future.

参考文献/References

[1] 王一冰. 基础化工原料产能过剩,化工新材料站上风口[J]. 中国石化, 2023(9): 30-32.[2] 2023丙烯行业市场供需格局及未来趋势分析[EB/OL]. (2023-06-20)[2024-01-23]. https://www.chinairn.com/news/20230620/143450371.shtml.[3] 2022年中国乙烯行业市场供需及进出口贸易分析:产量逐年攀升,成为最大乙烯生产国[EB/OL]. (2023-08-15) [2024-01-23]. https://www.chyxx.com/industry/1153125.html.[4]徐占武. 催化裂解多产丙烯新技术[J]. 炼油技术与工程, 2006(8): 4-8.[5] 刘俊涛, 谢在库, 徐春明, 等. C4烯烃催化裂解增产丙烯技术进展[J]. 化工进展, 2005, 24(12):1347-1351.[6] Tsunoda T, Sekiguchi M. The omega process for propylene production by olefin interconversion[J]. Catalysis Surveys from Asia, 2008, 12(1): 1-5.[7] 周琼. FCC装置增产轻烯烃技术[J]. 工业催化, 2001, 9(3): 14-19.[8] Park Y K, Lee C W, Na Y K, et al. Catalytic cracking of lower-valued hydrocarbons for producing light olefins[J]. Catalysis Surveys from Asia, 2010, 14(2): 75-84.[9] 闫鸿飞. 催化裂解多产低碳烯烃工艺技术进展[J]. 现代化工, 2020, 40(12): 4.[10] Johnson D L, Nariman K E, Ware R A. Catalytic production of light olefins rich in propylene: US, 6222087 B 1[P]. 2001-04-24.[11] 白玫. ACO技术制备烯烃工艺研究及展望[J]. 化工与医药工程, 2017, 38(3):18-23.[12] 杜鹏鹏, 徐婕, 韩信有, 等. 重劣质油催化裂解多产低碳烯烃技术研究[J]. 广州化工, 2021, 49(22): 12-14.[13] Ino T, Fujiyama Y, Redhwi H, et al. A new FCC process upgrades gasoline and maximizes propylene[J]. Catalagram, 2004, 94: 45-49.[14] 陈滨. 乙烯工学[M]. 北京:化学工业出版社, 1997.[15] 张君涛, 姚晓莎, 唐瑞源, 等. 催化裂解制烯烃工艺及催化剂研究进展[J]. 现代化工, 2023, 43(5): 56-60.[16] 施至诚.CIP-1型裂解催化剂的研究[J]. 工业催化, 1996(2): 30-34.[17] 王大壮, 王鹤洲, 谢朝钢, 等. 重油催化热裂解(CPP)制烯烃成套技术的工业应用[J]. 石油炼制与化工, 2013, 44(1): 56-59.[18] 李贤丰, 郭琳琳, 申宝剑. 催化裂解技术及其催化剂的研究进展[J]. 化工进展, 2017, 36(Z 1): 203-210.[19] 沙颖逊, 崔中强, 王明党, 等. 重质油裂解制烯烃的HCC工艺[J]. 石油化工, 1999(9): 618-621.[20] 袁训涛. 不同原料催化裂解性能的研究[D]. 青岛:中国石油大学(华东), 2011.[21] 张策, 张执刚, 龚剑洪, 等. 重油高效催化裂解(RTC)技术试验研究[J]. 石油炼制与化工, 2021, 52(8): 12-16.[22] 茅文星. 烃类催化裂解制烯烃技术[J]. 乙烯工业, 1996, 8(1):35-44.[23] 张晨曦, 魏飞, 王文宏, 等. 一种多级逆流催化裂化/裂解系统及方法: 中国,108753356B[P]. 2020-09-11.[24] 陈继军.原油直接裂解烃产品收率可达70%——访清华大学教授、教育部特聘教授、北京市绿色化学反应工程和技术重点实验室主任魏飞[J]. 中国石油和化工产业观察, 2020(9): 12-15.[25] Cheng Y, Wu C, Zhu J, et al. Downer reactor: From fundamental study to industrial application[J]. Powder Technology, 2008, 183(3): 364-384.[26] 吴青. 原油(重油)制化学品的技术及其进展 Ⅱ.重油催化裂解与DPC碱催化技术[J]. 炼油技术与工程, 2022, 52(8): 1-7.[27] 王平, 杨朝合, 田学民. 面向产品分布协调的两段提升管催化裂解多目标优化[J]. 化工学报, 2017, 68(3): 941-946.[28] 刘美佳, 王刚, 张忠东, 等. 石蜡基原油直接催化裂解制低碳烯烃新型炼化工艺的开发[J]. 化工进展, 2023, 42(10): 5191-5199.[29] 马文明, 郭阳玲, 许乃文, 等. 一种将原油转化成石油化工产品的集成方法和集成装置: 中国,201911046178.9[P]. 2021-05-04.[30]中国石化石油化工科学研究院科研处. 中国石化石油化工科学研究院的原油催化裂解生产化学品技术实现全球首次工业应用[J]. 石油炼制与化工, 2022, 53(7): 22.[31] Maadhah A G, Fujiyama Y, Redhwi H, et al. A new catalytic cracking process to maximize refinery propylene[J]. Arabian Journal for Science and Engineering(Section B: Engineering), 2008, 33(1 B): 17-28.[32] Corma A, Corresa E, Mathieu Y, et al. Crude oil to chemicals: Light olefins from crude oil[J]. Catalysis Science & Technology, 2017, 7(1): 12-46.[33] 张健, 胡云峰, 陈彦广, 等. 丁烯催化裂解制取丙烯催化剂的研究进展[J]. 能源化工, 2017, 38(5): 55-61.[34] Potapenko O V, Doronin V P, Likholobov V A, et al. A study of intermolecular hydrogen transfer from naphthenes to 1-hexene over zeolite catalysts[J]. Applied Catalysis( A: General), 2016, 516:153-159.[35] 徐瑞芳, 刘家旭, 梁翠翠, 等. 碱金属离子改性对纳米HZSM-5沸石丁烯裂解催化性能的影响[J]. 燃料化学学报, 2011, 39(6): 449-454.[36] Wakui K, Satoh K, Sawada G, et al. Cracking of n-butane over alkaline earth-containing HZSM-5 catalysts[J]. Catalysis Letters,2002, 84(3/4): 259-264.[37] Wang L, Ozawa K, Komatsu T, et al. Ca2+-exchanged ferrierite: Quasi one-dimensional zeolite for highly selective and stable formation of light alkenes in catalytic cracking of n-octane[J]. Applied Catalysis (A:General), 2011, 407(1/2): 127-133.[38] Tynj?覿l?覿 P, Pakkanen T T. Acidic properties of ZSM-5 zeolite modified with Ba2+, Al3+ and La3+ ion-exchange[J]. Journal of Molecular Catalysis( A Chemical), 1996, 110(2): 153-161.[39] Xiao N W, Zhen Z, Chun M X, et al. Effects of light rare earth on acidity and catalytic performance of HZSM-5 zeolite for catalytic cracking of butane to light olefins[J]. Journal of Rare Earths, 2007, 25(3): 321-328.[40] Jiang G, Zhang L, Zhao Z, et al. Highly effective P-modified HZSM-5 catalyst for the cracking of C4 alkanes to produce light olefins[J]. Applied Catalysis (A General), 2008, 340(2): 176-182.[41] Xue N H, Liu N, Lie N, et al. 1-butene cracking to propene over P/HZSM-5: Effect of lanthanum[J]. Journal of Molecular Catalysis (A Chemical), 2010, 327(1/2):12-19.[42] 陈亮, 谢在库, 马广伟, 等. 制乙烯丙烯的石脑油催化裂解催化剂: 中国,101279285[P]. 2008-10-08.[43] Corma A, Cristina M, Sauvanaud L. New materials as FCC active matrix components for maximizing diesel (light cycle oil, LCO) and minimizing its aromatic content[J]. Catalysis Today, 2007, 127(1/4): 3-16.[44] Jeong S M, Chae J H, Kang, et al. Catalytic pyrolysis of naphtha on the KVO3-based catalyst[J]. Catalysis Today, 2002, 74(3): 257-264.[45] Lee W H, Jeong S M, Chae J H, et al. Coke formation on KVO3-B2O3/SA5203 catalysts in the catalytic pyrolysis of naphtha[J]. Industrial & Engineering Chemistry Research, 2004, 43(8):1820-1826.[46] Zhang H,Li X J, Yi J, et al. Catalytic cracking of n-decane over NiO–MoO3 modified Pt/ZrO2–TiO2–Al2O3 catalyst with different Al2O3 ratios[J]. Petroleum Chemistry, 2017, 57(8): 666-672.[47] Shafei E N, Albahar M Z, Aljishi M F, et al. Naphtha catalytic cracking to olefins over zirconia–titania catalyst[J]. Reaction Chemistry & Engineering, 2022, 7: 123-132.[48] Tang R Y,W S J,C Y U, et al. Adjustment of the product distribution over a bifunctional Ca12Al14O33-supported MnOx catalyst from cracking gasification of the petroleum residue[J]. Energy Fuels, 2017, 31(6): 5995-6003.[49] 唐瑞源, 田原宇, 蔡健龙, 等. 碱土金属催化剂催化裂解重油实验研究[J]. 石油与天然气化工, 2015, 44(3): 23-27.[50] Kolts J H, Delzer G A. Dehydrogenation and cracking of C3 and C4 hydrocarbons to less saturated hydrocarbons: US, 4620051[P]. 1986-10-28.[51] 刘剑, 孙淑坤, 张永军, 等. 石脑油催化裂解制低碳烯烃技术进展及其技术经济分析[J]. 化学工业, 2011, 29(11): 33-36.[52] 孙维. 正戊烷热裂解自由基反应机理的综合数值模拟[D]. 大庆:东北石油大学, 2020.[53] 曹湘洪. 扩大乙烯装置原料来源的思考与实践[J]. 中国工程科学, 2001, 3(5): 35-43.[54] 许友好, 左严芬, 舒兴田. ZSM-5分子筛上正碳离子发生D,F和G型β键断裂反应的探索研究[J]. 石油学报(石油加工), 2021, 37(5): 967-973.[55] 付佳, 冯翔, 刘熠斌, 等. Br?准nsted酸强度对正碳离子转化方向影响的分子模拟[J]. 化工学报, 2018, 69(2): 725-732.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2024-07-10