|本期目录/Table of Contents|

[1]钟鸣,姜丽燕,李继文,等.气相色谱法分析工业丙烯腈中的杂质[J].石化技术与应用,2024,4:298-301.
 ZHONG Ming,JIANG Li-yan,LI Ji-wen,et al.Analyzing impurities in industrial acrylonitrile by gas chromatographic method[J].Petrochemical technology & application,2024,4:298-301.
点击复制

气相色谱法分析工业丙烯腈中的杂质(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年4期
页码:
298-301
栏目:
出版日期:
2024-07-10

文章信息/Info

Title:
Analyzing impurities in industrial acrylonitrile by gas chromatographic method
文章编号:
1009-0045(2024)04-0298-04
作者:
钟鸣姜丽燕李继文王川
中国石化(上海)石油化工研究院有限公司,上海 201208
Author(s):
ZHONG Ming JIANG Li-yan LI Ji-wen WANG Chuan
Shanghai Research Institute of Petrochemical Technology Co Ltd ,SINOPEC, Shanghai 201208 , China
关键词:
丙烯腈气相色谱有效碳数法校正因子校正面积归一化法
Keywords:
acrylonitrile gas chromatography effective carbon number theory corrected factor corrected area normalization method
分类号:
TQ 226.2
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.04.0298
文献标识码:
B
摘要:
以氮气为载气,选用酸改性聚乙二醇(FFAP)毛细管色谱柱对工业丙烯腈中杂质进行了定性分析,并采用校正面积归一化法进行了定量分析。结果表明:采用该方法并根据有效碳数理论,以丙烯腈替代丙腈、顺式(或反式)-丁烯腈替代甲基丙烯腈,测定丙烯腈标样中杂质的回收率为90.1%~106.8%,相对标准偏差为0.8%~7.5%,检测限低于6.6 μg/g;对丙烯腈产品中杂质分别采用校正面积归一化法及内标法定量时,同一组分的3次测量结果的重复性良好,2种计算结果无显著差异。
Abstract:
The impurities in acrylonitrile were qualitatively analyzed by using acid-modified polyethylene glycol (FFAP) capillary column with nitrogen as the carrier gas,and the corrected area normalization method was taken as the quantitation method. The results showed that according to the effective carbon number theory, acrylonitrile was suitable to replace propionitrile and cis- (or trans-) butenonitrile was suitable to replace methacrylonitrile. The recovery of impurities in acrylonitrile was 90.1% - 106.8%, the relative standard deviation (RSD) was 0.8% - 7.5%, and the limit of detection was less than 6.6 μg/g. Both corrected area normalization method and internal standard method were applicated to quantitate the impurities in acrylonitrile products, the three measurement results of the same component showed excellent repeatability, and there were no significant difference between the two calculation results.

参考文献/References

[1] 贺业亨,朱官来,肖海成,等.丙烯腈合成技术研究进展[J].石化技术与应用,2021,39(2):147-151.[2] 王建宁,沈志刚,李磊,等.不同条件的PAN纤维在干燥致密化过程中的结构演变[J].化纤与纺织技术,2023,52(2):10-15.[3] 吴历斌,吴粮华,高相东.PAN-CF的技术发展及应用(1)[J].高科技纤维与应用,2010,35(1):47-52.[4] 吴历斌,吴粮华,高相东.PAN-CF的技术发展及应用(2)[J].高科技纤维与应用,2010,35(2):34-40.[5] 袁海琴,陈臣举,张春雷.丙烯腈生产工艺[J].上海化工,2022,47(1):50-54. [6] 吴粮华.丙烯腈生产技术进展[J].化工进展,2007(10):1369-1372.[7] 张冷俗,李红娟,邢超,等.丙烯腈生产技术研究进展[J].弹性体,2011,21(4):85-91.[8] 黄金霞,谢妤,何伟,等.丙烯腈生产技术进展及市场分析[J].化学工业,2020,38(2):43-51.[9] 李玉芳.国内外丙烯腈的市场分析[J].精细与专用化学品,2018,26(8):5-8.[10] 陈燕.丙烯腈生产技术及市场分析[J].石油化工技术与经济,2023,39(3):9-12.[11] 唐琦民,王川.GB/T 7717.12—2008 工业用丙烯腈 第12部分:纯度及杂质含量的测定气相色谱法[S]. 北京:中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会,2008.[12] ATSM Committee D 20. ASTM E 1863—2018 Standard test method for analysis of acrylonitrile by gas chromatography[S].Pennsylvania: ASTM International,2018.[13] Scanlon J T,Willis D E. Calculation of flame ionization detector relative response actors using the effective carbon number concept[J]. J Chromatogr Sci,1985,23(8):333-340.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2024-07-10