|本期目录/Table of Contents|

[1]康豪,李建祥,王岳林,等.新型La2(SO4)3催化剂的制备及其正丁烷裂解性能[J].石化技术与应用,2025,3:180-186.
 KANG Hao,LI Jian-xiang,WANG Yue-lin,et al.Preparation of a novel La2(SO4)3 catalyst and its performance for n-butane cracking[J].Petrochemical technology & application,2025,3:180-186.
点击复制

新型La2(SO4)3催化剂的制备及其正丁烷裂解性能(PDF)

《石化技术与应用》[ISSN:1009-0045/CN:10-2024/TQ]

期数:
2025年3期
页码:
180-186
栏目:
出版日期:
2025-05-10

文章信息/Info

Title:
Preparation of a novel La2(SO4)3 catalyst and its performance for n-butane cracking
文章编号:
1009-0045(2025)03-0180-07
作者:
康豪李建祥王岳林朱辰杰任元珍徐彩霞刘明辉张强*
中国石油大学(华东) 化学化工学院,重质油国家重点实验室,山东 青岛 266500
Author(s):
KANG HaoLI Jian-xiang WANG Yue-lin ZHU Chen-jie REN Yuan-zhen XU Cai-xia LIU Ming-hui ZHANG Qiang
College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum(East China),Qingdao 266500, China
关键词:
La2(SO4)3SiO2催化剂正丁烷催化裂解烯烃
Keywords:
La2(SO4)3SiO2catalystn-butanecatalytic crackingolefin
分类号:
TQ 426.94
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2025.03.0180
文献标识码:
B
摘要:
为了将低价值、难裂解的正丁烷转化为高附加值的烯烃,采用浸渍法制备了La2(SO4)3 /SiO2系列催化剂,利用X射线衍射仪、物理吸附仪、扫描电子显微镜等仪器对系列催化剂进行了表征,考察了载体的比表面积、La2(SO4)3负载量(质量分数,下同)以及反应条件等因素对催化剂性质和反应性能的影响,同时与引入CeO2,TiO2,ZnO,ZrO2等其他金属氧化物的催化剂进行了裂解性能对比。结果表明:载体SiO2的比表面积越大,越有利于La2(SO4)3分散,烯烃(乙烯+丙烯,下同)收率随载体比表面积增大而增加,并随La2(SO4)3负载量的增加,先升高后降低,最佳负载量为10%,正丁烷转化率和烯烃收率分别为75.42%,43.91%;引入其他金属后10%La2(SO4)3 /SiO2的反应性能均出现下降,催化剂的反应活性由高到低依次为10%La2(SO4)3 /SiO2,Ce-10%La2(SO4)3 /SiO2,Zr-10%La2(SO4)3 /SiO2,Ti-10%La2(SO4)3 /SiO2,Zn-10%La2(SO4)3 /SiO2,其中Zr的引入会影响La2(SO4)3形成;在反应温度650 ℃、进料质量空速0.36 h-1的最佳工艺条件下,正丁烷转化率和烯烃收率分别为81.30%,44.90%。
Abstract:
In order to convert low value and difficult cracking n-butane into high value olefins, a series of La2(SO4)3 /SiO2 catalysts were prepared by the impregnation method. The series of catalysts were characterized by instruments such as X-ray diffractometer, physical adsorption instrument, and scanning electron microscope. The effects of factors such as the specific surface area of the support, the loading amount of La2(SO4)3 (mass fraction, the same below), and reaction conditions on the properties and cracking performance of the catalysts were investigated. Meanwhile, the cracking performance was compared with that of catalysts incorporating other metal oxides such as CeO2, TiO2, ZnO, and ZrO2. The results showed that the larger specific surface area of the support SiO2, the more favorable for the dispersion of La2(SO4)3. The yield of olefins (ethylene+propylene, the same below) increased with the increase of the specific surface area of the support, and first increased and then decreased with the increase of the loading amount of La2(SO4)3. The optimal loading amount was 10%, and the conversion rate of n-butane and the yield of olefins were 75.42% and 43.91%, respectively. After introducing other metals, the cracking performance of 10% La2(SO4)3 /SiO2 all decreased. The cracking activity order of the catalysts from high to low was 10% La2(SO4)3 /SiO2, Ce-10% La2(SO4)3 /SiO2, Zr-10%La2(SO4)3 /SiO2, Ti-10%La2(SO4)3 /SiO2, Zn-10%La2(SO4)3 /SiO2. Among them, the introduction of Zr would affect the formation of La2(SO4)3. Under the optimal process conditions of a reaction temperature of 650 ℃ and a feed mass space velocity of 0.36 h-1, the conversion rate of n-butane and the yield of olefins were 81.30% and 44.90%, respectively.

参考文献/References

[1] 孙傲, 田晓春, 王成宇, 等. 催化裂解制低碳烯烃工艺的应用前景及发展趋势[J]. 世界石油工业, 2024,31(2):91-101.[2] 刘晨, 饶维, 曾爱风, 等. C4烷烃裂解制低碳烯烃应用研究进展[J]. 广东化工, 2017,44(16):138-140.[3] 易天立, 王琦, 桂薇. 催化裂解制低碳烯烃工艺及催化剂研究进展[J]. 石化技术与应用, 2024,42(4):306-313.[4] Wang P Z,Wang S Q,Yue Y Y, et al. Effects of acidity and topology of zeolites on the n-alkane conversion at low reaction temperatures[J]. Microporous and Mesoporous Materials, 2020,292:109748.[5] 李正宇, 张忠东, 王刚, 等. 用于催化裂解多产低碳烯烃的ZSM-5分子筛改性[J]. 石化技术与应用, 2021,39(6):462-468.[6] 张文芳, 王鹏照, 杨朝合, 等. 正丁烷在HZSM-5分子筛上的高温裂解反应[J]. 石化技术与应用, 2018,36(6):382-385.[7] 贾淑君, 吴芹, 张耀远, 等. HZSM-5催化剂在烃类催化裂解制低碳烯烃中的应用研究进展[J]. 石油化工, 2023,52(3):366-379.[8] Sun H Q,Zhang Y Y,Li Y M, et al. Synergistic construction of bifunctional and stable Pt/HZSM-5 based catalyst for efficient catalytic cracking of n-butane[J]. Nanoscale, 2021,13(9):5103-5114.[9] Liu X B, Li W Z, Xu H Y, et al. Production of light alkenes with low CO2 emission from gas phase oxidative cracking (GOC) of hexane[J]. Reaction Kinetics & Catalysis Letters, 2004,81(2):203-209.[10] Lee J ,Hong U G,Wang S H, et al. Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5: Effect of lanthanum content [J]. Fuel Processing Technology, 2013,109:189-195.[11] Liu J,Jiang G J,Liu Y, et al. Hierarchical macro-meso-microporous ZSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability[J]. Scientific Reports, 2014,4:7276.[12] Lemonidou A,Vasalos I. Preparation and evaluation of catalysts for the production of ethylene via steam cracking: Effect of operating conditions on the performance of 12CaO-7Al2O3 catalyst[J]. Applied Catalysis, 1989,54(1):119-138.[13] Chen L,Yan C,Zhang F F, et al. Modulated oxygen mobility of perovskite oxides for efficient redox oxidative cracking of cycloalkane to light olefins[J]. Chemical Engineering Journal, 2023,477:146894.[14] Yoshimura N K A K . Oxidative catalytic cracking of n-butane to lower alkenes over layered BiOCl catalyst[J]. Applied Catalysis A(General), 2001,206(2):237-244.[15] Boyadjian C,Veer B V D,Babich I V, et al. Catalytic oxidative cracking as a route to olefins: Oxidative conversion of hexane over MoO3-Li/MgO[J]. Catalysis Today, 2010,157(1/2/3/4):345-350.[16] 唐新硕. 固体超强酸SO42-/ZrO2催化正烷烃异构化和裂解反应机理的研究[J]. 杭州大学学报(自然科学版), 1994,21(3):298-305.[17] Wang S ,Murat A K ,Hayakaw A T, et al. Effect of promoters on catalytic performance of Cr/SiO2 catalysts in oxidative dehydrogenation of ethane with carbon dioxide[J]. Catalysis Letters, 2001,73(2/3/4):107-111.[18] Shen W H ,Naito S. Easy precipitation method for preparation of cerium added La2O2SO4 used for oxygen storage[J]. Advanced Materials Research, 2014,886:196-199.[19] Teixeira L A V,Silva R G,Majuste D, et al. Stability of lanthanum in sulfate and phosphate systems and implications for selective rare earths extraction[J]. Minerals Engineering, 2020,155:106440-106451.[20] Shen X Y,Shao H M,Ding J W, et al. Zinc extraction from zinc oxidized ore using(NH4)2SO4 roasting-leaching process[J]. International Journal of Minerals,Metallurgy and Materials, 2020,27(11):1471-1481.[21] Jiménez M I,Santamaría G J,Maireles T P, et al. Calcined zirconium sulfate supported on MCM-41 silica as acid catalyst for ethanolysis of sunflower oil[J]. Applied Catalysis B(Environmental), 2011,103(1/2):91-98.[22] 王冉. 高比表面积α-Al2O3在催化剂中的应用及展望[J]. 浙江化工, 2024,55(4):26-31.[23] 彭新宇, 刘丽君, 沈伯雄, 等. M/ZSM-5(M=Cu、Mn、Fe、Ce、Ti)催化氧化甲苯性能研究[J]. 燃料化学学报(中英文), 2023,51(6):841-851.[24] 高强, 沈常美, 徐林, 等. 金属离子改性对纳米SO42-/ZrO2固体超强酸性能的影响[J]. 石油化工, 2005,34(8):719-724.[25] 汤效平, 周华群, 魏飞, 等. 催化裂解多产丙烯过程热力学分析[J]. 石油学报(石油加工), 2008,24(1):22-27.[26] 马立青, 翁惠新. 正丁烷催化裂解制乙烯和丙烯的研究[J]. 天然气化工, 2010,35(2):18-21.

备注/Memo

备注/Memo:
山东省重点研发计划(重大科技创新工程)资助项目(项目编号:2021 ZLGX 06)
更新日期/Last Update: 2025-05-10