[1]崔禹,郭垠,古哲坤,等.光气法和非光气法合成聚碳酸酯的结构与性能对比[J].石化技术与应用,2025,3:198-203.
CUI Yu,GUO Yin,GU Zhe-kun,et al.Comparison of structure and properties of polycarbonate synthesizedby phosgene method and non phosgene method[J].Petrochemical technology & application,2025,3:198-203.
点击复制
光气法和非光气法合成聚碳酸酯的结构与性能对比(PDF)
《石化技术与应用》[ISSN:1009-0045/CN:10-2024/TQ]
- 期数:
-
2025年3期
- 页码:
-
198-203
- 栏目:
-
- 出版日期:
-
2025-05-10
文章信息/Info
- Title:
-
Comparison of structure and properties of polycarbonate synthesizedby phosgene method and non phosgene method
- 文章编号:
-
1009-0045(2025)03-0198-06
- 作者:
-
崔禹; 郭垠; 古哲坤; 陈代雯; 张璐*
-
浙江石油化工有限公司 研究院,浙江 舟山 316000
- Author(s):
-
CUI Yu; GUO Yin; GU Zhe-kun; CHEN Dai-wen; ZHANG Lu
-
Research Institute of Zhejiang Petrochemical & Chemical Co Ltd, Zhoushan 316000, China
-
- 关键词:
-
聚碳酸酯; 光气法; 非光气法; 微观结构; 宏观性能
- Keywords:
-
polycarbonate; phosgene method; non-phosgene method; microstructure; macro-property
- 分类号:
-
TQ 324.4
- DOI:
-
DOI:10.19909/j.cnki.ISSN1009-0045.2025.03.0198
- 文献标识码:
-
B
- 摘要:
-
通过核磁共振仪、万能试验机、液相色谱仪等仪器及其表征方法,对比了光气法合成聚碳酸酯(PC)(PC-1,PC-2)与非光气法合成PC(PC-3,PC-4)的微观结构、力学性能、光学性能等的差异,分析了生产工艺对PC微观结构与宏观性能的影响。结果表明:PC-1~PC-4的力学性能相近,并且均添加了蓝色着色剂,PC-4中着色剂添加量最少,亮度最高;PC-1的分子链较长,相对分子质量较大,分散性指数适中,玻璃化转变温度、热变形温度及维卡软化温度均为最高;PC-3,PC-4均显示出明显的交联杂化结构,而PC-1,PC-2中几乎不存在;PC-1和PC-2主要采用叔丁基和苯氧基作为端基封端,而PC-3和PC-4主要以酚羟基和苯氧基作为端基封端;PC-3,PC-4中含残余单体量和含二苯并呋喃量均较高,二苯并呋喃赋予材料荧光性,限制其在光学敏感领域的应用,另外高温产生的交联副产物,增加了熔体黏度;PC-3重均相对分子质量适中,分散性指数小,分子链长度分布高度均一,提升了冲击强度和拉伸性能。
- Abstract:
-
By utilizing characterization methods such as nuclear magnetic resonance spectrometer, universal testing machine, and liquid chromatograph, the differences in microstructure, mechanical property, and optical property were compared between polycarbonate synthesized by phosgene method (PC-1,PC-2) and non phosgene method(PC-3,PC-4). And the influence of production processes on the microstructure and macroscopic properties of PC were analyzed. The results showed that PC-1 to PC-4 exhibited similar mechanical property, and all samples contained blue colorant, with PC-4 having the least colorant addition and the highest luminance. PC-1 possessed longer molecular chain, higher relative molecular weight, and a moderate dispersity index, resulting in the highest glass transition temperature, heat deflection temperature, and Vicat softening temperature. PC-3 and PC-4 displayed distinct cross-linked hybrid structure, which were nearly absent in PC-1 and PC-2. PC-1 and PC-2 primarily used tert-butyl and phenoxy groups as end-capping groups, while PC-3 and PC-4 mainly employed phenolic hydroxyl and phenoxy groups. PC-3 and PC-4 exhibited higher residual monomer content and dibenzofuran levels, with dibenzofuran imparting fluorescence to the material, limiting its application in optics-sensitive fields. Additionally, as a high-temperature cross-linked byproduct, dibenzofuran increased melt viscosity. PC-3 demonstrated moderate weight-average molecular weight, a small dispersity index, and highly uniform molecular chain length distribution,which enhancing its impact strength and tensile properties.
参考文献/References
[1] 刘松,陆健生,季献余.聚碳酸酯的热氧老化特性与断口形貌表征[J].失效分析与预防,2017,12(5):283-289.[2] 殷芳喜,吕翠英.非光气法聚碳酸酯的合成方法[J].广州化工,2017,45(19):4-6.[3] Fukuoka S, Fukawa I, Adachi T, et al. Industrialization and expansion of green sustainable chemical process: A review of non-phosgene polycarbonate from CO2[J]. Organic Process Research & Development,2019,23(2):145-169.[4] 李志,钱富娟,张璐,等.着色剂对PC校色的影响[J].工程塑料应用,2023,51(3):142-145.[5] Nishitsuji S, Watanabe Y, Ito H,et al. Molecular weight dependence of the physical aging of polycarbonate [J].Polymer: The International Journal for the Science and Technology of Polymers, 2019,178:121571.[6] Baick I H, Ye Y, Luciani C V, et al. Ultrahigh molecular weight nonlinear polycarbonates synthesized in microlayers [J].Industrial & Engineering Chemistry Research, 2013, 52(49):17419-17431.[7] Chen M D, Zheng M F, Zhang L,et al.Correlation between structural evolution and rheological properties for polycarbonate in the molten state [J]. Journal of Applied Polymer Science, 2022,140(5):53418.[8] Lim B H, Yi J W, Park O O. Effect of the monomer ratio on the properties of melt-polymerized polycarbonat [J].Macromolecular Research, 2019, 27(12):1221-1228.[9] Zheng M F, Chen M D, Zhang L,et al. Effects of alkali metal catalysts on the melt fluidity of polycarbonates with different degrees of polymerization [J]. Journal of Applied Polymer Science, 2023,140(10):53587.[10] 保罗,乔迪,詹姆斯,等. 封端聚碳酸酯、制造方法和由其形成的制品:中国, 111253562 A [P]. 2020-06-09.[11] Lee C H, Takagi H, Okamoto H,et al. Improving the mechanical properties of isosorbide copolycarbonates by varying the ratio of comonomers [J]. Journal of Applied Polymer Science, 2013,127(1):530-534.[12] Diepens M,Gijsman P. Photodegradation of bisphenol A polycarbonate [J]. Polymer Degradation and Stability, 2007, 92(3):397-406.[13] Rufus I B, Shah H, Hoyle C E. Identification of fluorescent products produced by the thermal treatment of bisphenol-A-based polycarbonate [J]. Journal of Applied Polymer Science, 2010, 51(9):1549-1558.[14] Chen M D, Bao J N, Zheng M F,et al. Reaction kinetics of melt post-polycondensation process for polycarbonate in film state [J]. Journal of Applied Polymer Science,2022,139(9):51731.[15] Choi Y H, Lyu M Y. Comparison of rheological characteristics and mechanical properties of fossil-based and bio-based Polycarbonate [J]. Macromolecular Research, 2020,28:299-309.
备注/Memo
- 备注/Memo:
-
浙江省科技厅资助项目(项目编号:C 2020 C 01010)
更新日期/Last Update:
2025-05-10