|本期目录/Table of Contents|

[1]朱晓艳.基于Aspen HYSYS软件的天然气脱酸流程模拟与优化[J].石化技术与应用,2022,2:102-107.
 ZHU Xiao-yan.Simulation and optimization of natural gas deacidification process based on Aspen HYSYS[J].Petrochemical technology & application,2022,2:102-107.
点击复制

基于Aspen HYSYS软件的天然气脱酸流程模拟与优化(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2022年2期
页码:
102-107
栏目:
出版日期:
2022-03-10

文章信息/Info

Title:
Simulation and optimization of natural gas deacidification process based on Aspen HYSYS
作者:
朱晓艳
北京石油化工工程有限公司,北京 100107
Author(s):
ZHU Xiao-yan
Beijing Petrochemical Engineering Co Ltd,Beijing 100107,China
关键词:
天然气脱酸Aspen HYSYS软件流程模拟CO2H2S
Keywords:
natural gas deacidification Aspen HYSYS software process simulation CO2 H2S
分类号:
TE 88
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2022.02.0102
文献标识码:
B
摘要:
基于Aspen HYSYS软件,针对天然气中的烃类和胺类组分分别选用Peng-Robinson状态方程和Acid Gas- Chemical Solvents状态方程,对处理量为100×104 m3/d的天然气脱酸装置进行模拟,分别考察胺液中哌嗪质量分数、胺液循环量、吸收塔和再生塔理论板数、贫胺液进吸收塔温度等操作参数对天然气脱酸的影响,并进行模拟优化。结果表明:天然气脱酸装置吸收塔塔顶的CO2体积分数为23×10-6,H2S体积分数小于1×10-6。优化模拟后的操作条件为:胺液闪蒸罐操作压力500 kPa,再生塔塔底压力100 kPa,再生塔塔底再生的贫胺液中N-甲基二乙醇胺(MDEA)中CO2质量分数0.3%,其塔底再沸器的热负荷4 891 kW,贫胺液进吸收塔温度50 ℃,MDEA的循环量80 m3/h,MDEA的质量分数36%,哌嗪质量分数4%,吸收塔和再生塔理论板数均为10块。
Abstract:
The Peng-Robinson equation of state and the Acid Gas-Chemical Solvents equation of state were selected for the hydrocarbon and amine components in natural gas in Aspen HYSYS software to simulate the natural gas deacidification unit of which the processing capacity was 100×104 m3/d. The effects such as piperazine mass fraction in amine liquid, circulating volume of amine liquid, theoretical plate number of absorption tower and regeneration tower, and operating parameters of lean amine liquid entering absorption tower temperature on natural gas deacidification were investigated and simulation optimization was carried out. The results showed that the CO2 volume fraction at the top of the absorption tower of the natural gas deacidification unit was 23 × 10-6 and the H2S volume fraction was less than 1 × 10-6. The simulated and optimized operating conditions were as followed: the operating pressure of the amine liquid flash tank was 500 kPa, the bottom pressure of the regeneration tower was 100 kPa, the mass fraction of CO2 in N-methyldiethanolamine (MDEA) in the lean amine liquid regenerated at the bottom of the regeneration tower was 0.3%, the heat load of the bottom reboiler was 4 891 kW, the temperature of the lean amine liquid entering the absorption tower was 50 ℃, the circulation rate of MDEA was 80 m3/h, the mass fraction of MDEA was 36%, the mass fraction of piperazine was 4% and the theoretical plates of the absorption tower and the regeneration tower were both 10 pieces.

参考文献/References

[1] 白羽,李富兵,王宗礼,等. 2020年我国天然气供需形势分析及前景展望[J]. 中国矿业,2021,30(3):1-7.
[2] 李奇,姬忠礼,段西欢,等. 基于HYSYS和GA的天然气净化装置用能优化[J].天然气工业,2011,31 (9):102-106.
[3] 金大天,曹义鸣,王丽娜,等. HYSYS的二次开发及其在多组分气体膜分离过程模拟中的应用[J]. 膜科学与技术,2012,32 (5):87-91.
[4] Qeshta H J,Abuyahya S,Pal P,et al.Sweetening liquefied petroleum gas (LPG): Parametric sensitivity analysis using Aspen HYSYS[J]. Journal of Natural Gas Science and Engineering,2015,26:1011-1017.
[5] 唐建峰,王玉娟,王曰,等. Aspen HYSYS 对胺法脱碳再生工艺模拟的适用性[J]. 化工进展,2021,40(2):747-754.
[6] 高雪颖. 基于HYSYS 机理模型的催化裂化工艺参数研究与优化[J]. 石油化工设计,2020,37(4): 1-6.
[7] 邸志国. HYSYS 动态减压模块在天然气分子筛脱水塔升降压孔板计算中的应用[J]. 化学工程师,2020,34(8):15-17.
[8] 温冬云,张春阳,李明,等. 采用AMISM软件优化天然气胺法脱硫工艺[J]. 石油与天然气化工,2007,36 (5):393-396.
[9] Lv Y T,Huang K,Huang C,et al.Influence factor research on deacidification process for high carbon content gas field by numerical simulation-A case study of the Oudeh gas field[J]. SpringerPlus,2015,4(1):680-693.
[10] Lee J I, Frederick D O, Alan E M. Solubility of mixtures of carbon dioxide and hydrogen sulfide in 5.0 N monoethanolamine solutions[J]. Journal of Chemical & Engineering Data,1975,20(5):161-163.
[11] 顾安忠.液化天然气技术[M].北京:机械工业出版社,2008:1.
[12] 陆诗建,韩月梅,尹兆娟,等.基于AMSIM平台对富胺溶液解吸CO2的模拟研究[J].化学与生物工程,2009,26(9):66-68.
[13] 朱迎新,王淑娟,赵博,等.胺法脱碳系统模拟及吸收剂的选择[J].清华大学学报(自然科学版),2009,49(11):1822-1825.
[14] Peters L,Hussain A,Follmann M,et al.CO2 removal from natural gas by employing amine absorption and membrane technology:A technical and economical analysis[J]. Chemical Engineering Journal,2011,172(2/3): 952-960.
[15] 贾琴芳,刘洪杰,张莉,等.丘东1#天然气处理装置工艺优化研究[J].石油与天然气化工,2009,38(5):386-389.
[16] 彭修军,温崇荣,朱雯钊. 活化MDEA脱碳溶剂研究[C]//2010年全国气体净化技术交流会论文集. 郑州:全国气体净化信息站,2010: 14-18.
[17] 王开岳.天然气净化工艺[M]. 北京:石油工业出版社,2005:564-568.
[18] GPSA. Engineering Data Book [M]. 12th Edition. Tulsa,Ok:Gas Processors Suppliers Association,2004:24-27.
[19] 王长元,令狐磊. 低浓度煤层气脱碳工艺模拟研究[J]. 矿业安全与环保,2012.39(6):4-6.
[20] Vasquez S A,Barturen A P,Carbajal F M. Application of the Aspen HYSYS simulator to solve problems of the regenerative Rankine cycle with intermediate reheating[J].Information Technology,2020,31(3):199-208.

备注/Memo

备注/Memo:
陕西延长石油(集团)有限责任公司资助项目(项目编号:12008.0000.E 000.01-01)
更新日期/Last Update: 2022-03-10