[1] 向轶, 陈艳艳, 吕文豪, 等. 碳捕集技术应用进展及碳交易市场分析[J]. 石化技术与应用, 2020, 38(5): 353-357.[2] 贾海龙, 王园园, 马杰, 等. 中型炼油厂碳排放评估与碳减排措施[J]. 石化技术与应用, 2022, 40(2): 139-143.[3] 徐娜, 石广玉, 戴铁, 等. 温室气体吸收带重叠对CO2红外辐射效应的影响[J]. 气候与环境研究, 2011, 16(4): 441-451.[4] Zhang C, Zhu P C, Tan L X, et al. Synthesis and properties of organic microporous polymers from the monomer of hexaphenylbenzene based triptycene[J]. Polymer, 2016, 82: 100-104.[5] Lee H, Park H W, Chang J Y. Preparation of microporous polymers consisting of tetraphenylethene and alkyne units[J]. Macromolecular Research, 2013, 21(11): 1274-1280.[6] Zhang B, Yan J, Wang Z G. Microporous polybenzoxazoles with tunable porosity and heteroatom concentration for dynamic adsorption/separation of CO2 mixed gases[J]. The Journal of Physical Chemistry C, 2018, 122(24): 12831-12838.[7] Yan J, Zhang B, Guo S W, et al. Porphyrin-based nanoporous organic polymers for adsorption of carbon dioxide, ethane, and methane[J]. ACS Applied Nano Materials, 2021, 4(10): 10565-10574.[8] Lu W G, Sculley J P, Yuan D Q, et al. Carbon dioxide capture from air using amine-grafted porous polymer networks[J]. The Journal of Physical Chemistry C, 2013, 117(8): 4057-4061.[9] Liao Y Z, Cheng Z H, Zuo W W, et al. Nitrogen-rich conjugated microporous polymers: Facile synthesis, efficient gas storage, and heterogeneous catalysis[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38390-38400.[10] Rong M, Yang L G, Wang L, et al. Fabrication of microporous aminal-linked polymers with tunable porosity toward highly efficient adsorption of CO2, H2, organic vapor, and volatile iodine[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17369-17379.[11] Li X, Guo J W, Yue H B, et al. Synthesis of thermochemically stable tetraphenyladamantane-based microporous polymers as gas storage materials[J]. RSC Advances, 2017, 7(26): 16174-16180.[12] Li X, Guo J W, Tong R, et al. Microporous frameworks based on adamantane building blocks: Synthesis, porosity, selective adsorption and functional application[J]. Reactive and Functional Polymers, 2018, 130: 126-132.[13] 李福崇, 鲁鸿, 刘宴升, 等. 新型核壳Pd/Fe3O4@C复合纳米材料的合成与表征[J]. 石化技术与应用, 2017, 35(4): 273-276.[14] Rehman A, Park S J. Preparation and characterization of polyamides and nitrogen‐doped carbons for enhanced CO2 capture[J]. Bulletin of the Korean Chemical Society, 2017, 38(11): 1285-1292.[15] 李帅, 黄思赟. MOFs基氮自掺杂多孔炭的可控制备及其电化学性能[J]. 石化技术与应用, 2022, 40(3): 153-159.[16] Du Y, Yang H, Wan S, et al. A titanium-based porous coordination polymer as a catalyst for chemical fixation of CO2[J]. Journal of Materials Chemistry A, 2017, 5(19): 9163-9168.[17] Bhunia S, Bhanja P, Das S K, et al. Triazine containing N-rich microporous organic polymers for CO2 capture and unprecedented CO2/N2 selectivity[J]. Journal of Solid State Chemistry, 2017, 247: 113-119.[18] Yuan B, Wang J, Chen Y X, et al. Unprecedented performance of N-doped activated hydrothermal carbon towards C2H6/CH4, CO2/CH4, and CO2/H2 separation[J]. Journal of Materials Chemistry A, 2016, 4(6): 2263-2276.[19] Yan J, Zhang B, Wang Z G. Monodispersed ultramicroporous semi-cycloaliphatic polyimides for the highly efficient adsorption of CO2, H2 and organic vapors[J]. Polymer Chemistry, 2016, 7(47): 7295-7303.[20] Yuan K Y, Liu C, Zong L S, et al. Promoting and tuning porosity of flexible ether-linked phthalazinone-based covalent triazine frameworks utilizing substitution effect for effective CO2 capture[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13201-13212.[21] Martín C F, St?觟ckel E, Clowes R, et al. Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture[J]. Journal of Materials Chemistry, 2011, 21(14): 5475-5483.[22] Dey S, Bhunia A, Breitzke H, et al. Two linkers are better than one: Enhancing CO2 capture and separation with porous covalent triazine-based frameworks from mixed nitrile linkers[J]. Journal of Materials Chemistry A, 2017, 5(7): 3609-3620.[23] 李毓玉, 吴力峰, 李剑, 等. 柴油中碱性氮在Hβ型分子筛上吸附的热力学及动力学[J]. 石化技术与应用, 2015, 33(1): 14-17.[24] Yuan K Y, Liu C, Han J H, et al. Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties[J]. RSC Advances, 2016, 6(15): 12009-12020.