|本期目录/Table of Contents|

[1]李雄,刘勤.后修饰法制备官能化有机框架材料[J].石化技术与应用,2023,2:83-87.
 LI Xiong,LIU Qin.Synthesis of functionalized organic framework materials by post-modification[J].Petrochemical technology & application,2023,2:83-87.
点击复制

后修饰法制备官能化有机框架材料(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年2期
页码:
83-87
栏目:
出版日期:
2023-03-10

文章信息/Info

Title:
Synthesis of functionalized organic framework materials by post-modification
文章编号:
1009-0045(2023)02-0083-05
作者:
李雄12刘勤1
(1.科顺防水科技股份有限公司 研究开发部,广东 佛山 528300;2.广东工业大学 轻工化工学院,广东 广州 510006)
Author(s):
LI Xiong1 2 LIU Qin1
(1. Department of Research and Development, Keshun Waterproof Technology Co Ltd, Foshan 528300, China; 2. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China)
关键词:
超高热稳定性选择性有机框架材料后修饰氨基
Keywords:
ultra-high thermal stability selectivity organic framework material post-modification amino group
分类号:
TQ 317.9
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.02.0083
文献标识码:
B
摘要:
通过选用3,3′,5,5′,7,7′-六(4-溴苯基)-1,1′-联金刚烷和1,4-苯二硼酸先构筑了具有超高热稳定性的框架材料CF-2,再对CF-2进行先硝化后氨化的侧链接枝改性,制备了比表面积为605 m2/g,孔径为0.61~0.78 nm的有机框架材料CF-NH2。结果表明:在273 K,0.1 MPa的条件下,CF-NH2的CO2/N2选择性可高达70.59,CO2,N2的吸附量分别为95.97,4.91 cm3/g,CO2的吸附焓为34.82 kJ/mol;400 ℃下失重率仅约5%,热稳定性优异。
Abstract:
3,3′,5,5′,7,7′-hexakis (4-bromophenyl)-1,1′-biadamantane and 1,4-phenylenediboronic acid were used to synthesize the ultra-high thermally stable porous framework polymer (named as CF-2). By side chain nitrification and amination, an organic framework material CF-NH2 with specific surface area of 605 m2/g and pore diameter of 0.61-0.78 nm was synthesized. The results showed that the CO2 /N2 selectivity of CF-NH2 was as high as 70.59; the adsorption capacity of CO2 and N2 were 95.97 and 4.91 cm3/g, respectively; the adsorption enthalpy of CO2 was 34.82 kJ/mol at 273 K and 0.1 MPa. The weight loss rate was only about 5% at 400 ℃, which showed excellent thermal stability.

参考文献/References

[1] 向轶, 陈艳艳, 吕文豪, 等. 碳捕集技术应用进展及碳交易市场分析[J]. 石化技术与应用, 2020, 38(5): 353-357.[2] 贾海龙, 王园园, 马杰, 等. 中型炼油厂碳排放评估与碳减排措施[J]. 石化技术与应用, 2022, 40(2): 139-143.[3] 徐娜, 石广玉, 戴铁, 等. 温室气体吸收带重叠对CO2红外辐射效应的影响[J]. 气候与环境研究, 2011, 16(4): 441-451.[4] Zhang C, Zhu P C, Tan L X, et al. Synthesis and properties of organic microporous polymers from the monomer of hexaphenylbenzene based triptycene[J]. Polymer, 2016, 82: 100-104.[5] Lee H, Park H W, Chang J Y. Preparation of microporous polymers consisting of tetraphenylethene and alkyne units[J]. Macromolecular Research, 2013, 21(11): 1274-1280.[6] Zhang B, Yan J, Wang Z G. Microporous polybenzoxazoles with tunable porosity and heteroatom concentration for dynamic adsorption/separation of CO2 mixed gases[J]. The Journal of Physical Chemistry C, 2018, 122(24): 12831-12838.[7] Yan J, Zhang B, Guo S W, et al. Porphyrin-based nanoporous organic polymers for adsorption of carbon dioxide, ethane, and methane[J]. ACS Applied Nano Materials, 2021, 4(10): 10565-10574.[8] Lu W G, Sculley J P, Yuan D Q, et al. Carbon dioxide capture from air using amine-grafted porous polymer networks[J]. The Journal of Physical Chemistry C, 2013, 117(8): 4057-4061.[9] Liao Y Z, Cheng Z H, Zuo W W, et al. Nitrogen-rich conjugated microporous polymers: Facile synthesis, efficient gas storage, and heterogeneous catalysis[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38390-38400.[10] Rong M, Yang L G, Wang L, et al. Fabrication of microporous aminal-linked polymers with tunable porosity toward highly efficient adsorption of CO2, H2, organic vapor, and volatile iodine[J]. Industrial & Engineering Chemistry Research, 2019, 58(37): 17369-17379.[11] Li X, Guo J W, Yue H B, et al. Synthesis of thermochemically stable tetraphenyladamantane-based microporous polymers as gas storage materials[J]. RSC Advances, 2017, 7(26): 16174-16180.[12] Li X, Guo J W, Tong R, et al. Microporous frameworks based on adamantane building blocks: Synthesis, porosity, selective adsorption and functional application[J]. Reactive and Functional Polymers, 2018, 130: 126-132.[13] 李福崇, 鲁鸿, 刘宴升, 等. 新型核壳Pd/Fe3O4@C复合纳米材料的合成与表征[J]. 石化技术与应用, 2017, 35(4): 273-276.[14] Rehman A, Park S J. Preparation and characterization of polyamides and nitrogen‐doped carbons for enhanced CO2 capture[J]. Bulletin of the Korean Chemical Society, 2017, 38(11): 1285-1292.[15] 李帅, 黄思赟. MOFs基氮自掺杂多孔炭的可控制备及其电化学性能[J]. 石化技术与应用, 2022, 40(3): 153-159.[16] Du Y, Yang H, Wan S, et al. A titanium-based porous coordination polymer as a catalyst for chemical fixation of CO2[J]. Journal of Materials Chemistry A, 2017, 5(19): 9163-9168.[17] Bhunia S, Bhanja P, Das S K, et al. Triazine containing N-rich microporous organic polymers for CO2 capture and unprecedented CO2/N2 selectivity[J]. Journal of Solid State Chemistry, 2017, 247: 113-119.[18] Yuan B, Wang J, Chen Y X, et al. Unprecedented performance of N-doped activated hydrothermal carbon towards C2H6/CH4, CO2/CH4, and CO2/H2 separation[J]. Journal of Materials Chemistry A, 2016, 4(6): 2263-2276.[19] Yan J, Zhang B, Wang Z G. Monodispersed ultramicroporous semi-cycloaliphatic polyimides for the highly efficient adsorption of CO2, H2 and organic vapors[J]. Polymer Chemistry, 2016, 7(47): 7295-7303.[20] Yuan K Y, Liu C, Zong L S, et al. Promoting and tuning porosity of flexible ether-linked phthalazinone-based covalent triazine frameworks utilizing substitution effect for effective CO2 capture[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13201-13212.[21] Martín C F, St?觟ckel E, Clowes R, et al. Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture[J]. Journal of Materials Chemistry, 2011, 21(14): 5475-5483.[22] Dey S, Bhunia A, Breitzke H, et al. Two linkers are better than one: Enhancing CO2 capture and separation with porous covalent triazine-based frameworks from mixed nitrile linkers[J]. Journal of Materials Chemistry A, 2017, 5(7): 3609-3620.[23] 李毓玉, 吴力峰, 李剑, 等. 柴油中碱性氮在Hβ型分子筛上吸附的热力学及动力学[J]. 石化技术与应用, 2015, 33(1): 14-17.[24] Yuan K Y, Liu C, Han J H, et al. Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties[J]. RSC Advances, 2016, 6(15): 12009-12020.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(项目编号:21476051)
更新日期/Last Update: 2023-03-10