|本期目录/Table of Contents|

[1]张兵,郑晓军,杨彩娟,等.渣油加氢装置加热炉结焦量化表征及预测[J].石化技术与应用,2023,5:363-366.
 ZHANG Bing,ZHENG Xiao-jun,YANG Cai-juan,et al.Quantitative characterization and prediction for coking in furnace of residual oil hydrogenation unit[J].Petrochemical technology & application,2023,5:363-366.
点击复制

渣油加氢装置加热炉结焦量化表征及预测(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年5期
页码:
363-366
栏目:
出版日期:
2023-09-10

文章信息/Info

Title:
Quantitative characterization and prediction for coking in furnace of residual oil hydrogenation unit
文章编号:
1009-0045(2023)05-0363-04
作者:
张兵郑晓军杨彩娟张峥付纪林
(石化盈科信息技术有限责任公司,上海 200040)
Author(s):
ZHANG BingZHENG Xiao-junYANG Cai-juanZHANG ZhengFU Ji-lin
(Petro-Cyber Works Information Technology Co Ltd,Shanghai 200040,China)
关键词:
渣油加氢装置加热炉炉管结焦量化表征预测
Keywords:
residual oil hydrogenation unitfurnace tubecokingquantitative characterizationprediction
分类号:
TQ 021.8
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.05.0363
文献标识码:
B
摘要:
为了准确且快速判断渣油加氢装置加热炉结焦程度、预判结焦趋势,从能量传递角度设计出结焦量化表征指标(N),N为实际操作条件且炉管在洁净状态下的内传热系数除以其在同等操作条件及结焦状态下的内传热系数所得值;采用Aspen HYSYS软件模拟建立了N值变化预测模型,并结合某公司300万t/a渣油加氢装置生产数据进行了验证。结果表明:经计算所得N值及其变化趋势与实际生产运行情况满足一致性,皮尔逊相关度计算结果满足排他性要求;所建立的结焦量化预测模型的准确性较好,历史同期的实际N值与其回归值的自检相对误差均值为3.15%;在跟踪同装置生产运行的4个月期间,预测模型的实际N值与预测值的变化总体趋势基本一致,相对预报误差均值为3.90%。
Abstract:
In order to accurately and quickly determine the coking degree and predict coking trend in the furnace of residual oil hydrogenation unit, the quantitative index of coking (N) was designed according to energy transfer, which was the internal heat transfer coefficient without coking divided by the internal heat transfer coefficient with coking under the same operation condition. The prediction model for N was established by Aspen HYSYS software. The model was confirmed by production data from a 3 Mt/a residual oil hydrogenation unit. The results showed that the calculated N value and its trend of change was consistent with the actual condition, and the Person correlation coefficient met the exclusivity requirement. The established coking quantitative prediction model had good accuracy. The average self-checking relative error between the actual N value and its regression value during the same period in history was 3.15%. During next 4 months period of tracking production and operation of the unit, the overall trend of the predicted N value was basically consistent with the actual N value, with the average relative prediction error of 3.90%.

参考文献/References

[1] 王迪勇,高文坛,孙清龙,等. 渣油加氢装置反应炉管结焦原因分析及烧焦处理[J]. 炼油技术与工程,2018,48(9): 36-39.[2] 张力,张政伟. 延迟焦化加热炉炉管结焦原因分析及对策[J]. 石油炼制与化工,2010,41(1):21-25.[3] 黄德先,张伟勇. 延迟焦化加热炉炉管结焦厚度的一种在线检测方法:中国,101498578 A[P]. 2009-08-05.[4] 韩健. 加热炉管内两相流内膜传热系数计算方法的比较[J]. 石油化工设备技术,2014,35(6): 34-40.[5] 张兵,郑晓军,张峥. 制氢炉辐射段简洁耦合模型的建立及应用[J]. 石化技术与应用,2021,39(4): 242-246.[6] 郑晓军,张峥,张兵. 催化裂化装置烟机结垢总量表征及软测量模型研究[J]. 炼油技术与工程,2020,50(5):45-48.[7] 王桂增,叶昊. 主元分析与偏最小二乘法[M]. 北京: 清华大学出版社,2012: 15-23.[8] Li W H,Yue H H,Qin S J,et al. Recursive PCA for adaptive process monitoring[J]. Journal of Process Control,2000,10(5): 471-486.[9] 陈德钊. 多元数据处理[M]. 北京:化学工业出版社,1998: 125-138.

备注/Memo

备注/Memo:
中国石化科技开发基金资助项目(项目编号:322107 & 320130)
更新日期/Last Update: 2023-09-10