|本期目录/Table of Contents|

[1]孙亮,冷斌,叶尔木拉提·木哈得尔,等.不同标号沥青的流变性能[J].石化技术与应用,2023,2:108-112.
 SUN Liang,LENG Bin,YEERMULATI Mu-hadeer,et al.Rheological performance of different asphalt grades[J].Petrochemical technology & application,2023,2:108-112.
点击复制

不同标号沥青的流变性能(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2023年2期
页码:
108-112
栏目:
出版日期:
2023-03-10

文章信息/Info

Title:
Rheological performance of different asphalt grades
文章编号:
1009-0045(2023)02-0108-05
作者:
孙亮1冷斌1叶尔木拉提·木哈得尔1李宁博2 郝培文2*
(1.中国铁建股份有限公司 中铁建新疆京新高速公路有限公司,新疆 乌鲁木齐 830000;2.长安大学 公路学院,陕西 西安 710000)
Author(s):
SUN Liang1LENG Bin1YEERMULATI Mu-hadeer1LI Ning-bo2 HAO Pei-wen2
(1. Xinjiang Jingxin Expressway Co Ltd, China Railway Construction Corporation Limited, Wulumuqi 830000, China;2. Highway College of Changan University,Xi′an 710000,China)
关键词:
沥青耐老化性能耐车辙性复数剪切模量车辙因子流变性能
Keywords:
asphalt aging-resistant performance rutting resistance complex shear modulus rutting factor rheological performance
分类号:
TQ 626.8+6
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2023.02.0108
文献标识码:
B
摘要:
借助温度扫描、频率扫描、多重应力蠕变恢复等实验,对20号、30号、50号、70号沥青及其旋转薄膜烘箱老化后沥青的流变性能进行了评价。结果表明:随着温度升高,4种沥青老化前后复数剪切模量和车辙因子均降低,并且老化后的高于老化前;在60 ℃温度下,无论是在低频还是高频荷载作用下,标号越低,沥青耐剪切变形能力越强,耐车辙性越好,而应力敏感性降低;标号越低的沥青,G-R参数值越大,耐开裂性则降低。
Abstract:
The rheological performance of 20#, 30#, 50# and 70# original asphalt and asphalt aged in rotary film oven was evaluated by using temperature scanning test, frequency scanning test, multi stress creep recovery (MSCR) test. The results showed that as the temperature rose, the complex shear modulus (G*) and rutting factor (G*/sin δ) of virgin and aged asphalt all decreased. The G* and G*/sin δ of aged asphalt were larger than those of the virgin asphalt. At the temperature of 60 ℃, when the asphalt grade decreased under all frequency loads, the shear deformation resistance of the asphalt was stronger; the rutting resistance was better; the stress sensitivity was lower. In low-grade asphalt, when the G-R value was greater, the crack resistance was worse.

参考文献/References

[1] 张喜军,仝配配,蔺习雄,等.基于线性振幅扫描实验评价硬质沥青的疲劳性能[J].材料导报, 2021, 35(18): 18083-18089.[2] 张海林.热氧及紫外老化下硬质沥青与SBS改性沥青多尺度特性对比研究[J].中外公路,2020, 40(6): 305-310.[3] 李波,张喜军,李剑新,等.基于Burgers模型的硬质沥青低温性能评价[J].建筑材料学报,2021, 24(5): 1110-1116.[4] 蒋文韬,郝培文,赵超志,等.PVP修饰石墨烯对SBS改性沥青流变性能的影响[J].建筑材料学报,2021, 24(2): 385-392.[5] 崔鹰翔,郝培文.基于MSCR实验的橡胶改性沥青高温性能[J].筑路机械与施工机械化,2019, 36(4): 47-51.[6] Mensching D J, Rowe G M, Daniel J S, et al. Exploring low-temperature performance in Black Space[J]. Journal of the Association of Asphalt Paving Technologists, 2015(84): 84.[7] Ayad S, Gustavo M P, Davide L P, et al. The effects of laboratory ageing on rheological and fracture characteristics of different rubberised bitumens[J]. Construction and Building Materials, 2018(180): 188-198.[8] Zhang R H,Sias Jo E,Eshan V. Evaluation of the cracking and aging susceptibility of asphalt mixtures using viscoelastic properties and master curve parameters[J].交通运输工程学报(英文版),2022,9(1):106-119.[9] Anderson R M, King G N, Hanson D I, et al. Evaluation of the relationship between asphalt binder properties and non-load related cracking[J]. Journal of the Association of Asphalt Paving Technologists, 2011, 80: 615-664.[10] 杨震. 沥青老化前后多尺度行为特性研究[D].广州:华南理工大学,2018.[11] 周维锋.基于CAM复数模量模型的沥青混合料玻璃态转变温度确定[J].公路与汽运,2019 (2): 52-56.[12] Wasiuddin N M, Fogle C M, Zaman M M, et al. Effect of antistrip additives on surface free energy characteristics of asphalt binders for moisture-induced damage potential[J].Journal of Testing and Evaluation, 2007,35(1): 36-44.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2023-03-10