|本期目录/Table of Contents|

[1]赵鸣芝,段宏昌,吕鹏刚,等.密度泛函理论计算ZSM-5分子筛酸性的研究进展[J].石化技术与应用,2024,4:314-318.
 ZHAO Ming-zhi,DUAN Hong-chang,L? Peng-gang,et al.Research progress on acidity calculation of ZSM-5 molecular sieve by density functional theory[J].Petrochemical technology & application,2024,4:314-318.
点击复制

密度泛函理论计算ZSM-5分子筛酸性的研究进展(PDF)

《石化技术与应用》[ISSN:1009-0046/CN:62-1138/TQ]

期数:
2024年4期
页码:
314-318
栏目:
出版日期:
2024-07-10

文章信息/Info

Title:
Research progress on acidity calculation of ZSM-5 molecular sieve by density functional theory
文章编号:
1009-0045(2024)04-0314-05
作者:
赵鸣芝段宏昌吕鹏刚潘志爽王漫云蔡进军郑云锋刘涛
中国石油石油化工研究院 兰州化工研究中心,甘肃 兰州 730060
Author(s):
ZHAO Ming-zhi DUAN Hong-chang L?譈 Peng-gang PAN Zhi-shuang WANG Man-yun CAI Jin-jun ZHENG Yun-feng LIU Tao
Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina,Lanzhou 730060,China
关键词:
分子筛密度泛函理论量子化学计算酸性质酸强度
Keywords:
molecular sieve density functional theory quantum chemistrycalculation acid property acid intensity
分类号:
TQ 426.4
DOI:
DOI:10.19909/j.cnki.ISSN1009-0045.2024.04.0314
文献标识码:
A
摘要:
从分子筛改性、酸性位点、酸类型、酸强度等方面对密度泛函理论(DFT)计算ZSM-5分子筛酸性的研究进展进行了综述,并对该计算方法存在问题及今后发展方向进行了分析。指出今后采用DFT计算ZSM-5分子筛酸性时,应注重簇模型的选取,准确固定原子的位置,建立分子筛双或多酸性中心协同研究模型等。
Abstract:
The research progress of acidity calculation of ZSM-5 molecular sieve by density functional theory (DFT) was reviewed from the aspects of molecular sieve modification, acid sites, acid types and acid intensity, and the existing problems and future development direction of this calculation method were analyzed.It was pointed out that in the future, when using DFT to calculate the acidity of ZSM-5 molecular sieve, it should pay attention to the selection of cluster models, accurate fixation of atomic positions, and the establishment of synergistic research models for molecular sieve dual or multiple acidic centers.

参考文献/References

[1] 于善青,代振宇,田辉平,等.采用密度泛函理论研究金属离子改性Y型分子筛的酸性[J].石油学报(石油加工), 2011, 27(6):839-844.[2] 鲍莹.分子筛Br?准nsted酸性的理论计算表征[D].大连:辽宁师范大学, 2005.[3] 倪丹.H-MCM-22分子筛外表面酸性位吸附性质的理论计算研究[D].大连:辽宁师范大学, 2008.[4] Trujillo,Carlos A,Gonzalez A,et al.General aspects of zeolite acidity characterization[J]. Microporous & Mesoporous Materials(The Official Journal of the International Zeolite Association), 2015,215:229-243.[5] 李艺,朱伟平,李飞,等.SAPO-34分子筛表面酸性分析方法研究进展[J].神华科技, 2010(1): 68-73.[6] 赵亮,吴玉坤,高杉,等.ZSM-5分子筛硅铝比与其催化性能关系的量子化学研究[J].分子科学学报(中英文版),2010,26(2): 86-91.[7] 贺宁.MCM-22分子筛超笼中的酸性及反应性的理论计算研究[D].大连:辽宁师范大学, 2006.[8] 徐耀良.环氧化物阳离子开环聚合的量子化学研究[D].杭州:浙江大学, 2007.[9] Raghavachari K, Pople J A, Replog E S, et al. Fifth order Moller-Plesset perturbation theory: Comparison of existion correlation methods and implementation of new methods correct to fifth-order [J]. Journal of Physical Chemistry, 1990, 94(14): 5579-5586.[10] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140: 1133-1138.[11] Sittiwong J , Hiruntrakool K , Rasrichai A .Insights into glyphosate adsorption on Lewis acidic zeolites from theoretical modelling[J].Microporous and Mesoporous Materials( The Offical Journal of the International Zeolite Association), 2022, 341: 1387-1811.[12] 唐晓敏. 分子筛骨架铝原子分布的理论模拟和固体核磁研究[D].武汉:中国科学院精密测量科学与技术创新研究院,2022.[13] 熊浩林, 韩秀梅, 张晓燕.分子筛催化剂的发展与展望[J].材料导报, 2021, 35(Z 1): 137-142 .[14] Matam S K, Nastase S F, Logsdail A J, et al.Methanol loading dependent methoxylation in zeolite H-ZSM-5[J].Chemical Science, 2020(26): 6805-6814.[15] Wu Q H, Wang Y P, Peng Y J,et al.Microwave-assisted pyrolysis of waste cooking oil for hydrocarbon bio-oil over metal oxides and HZSM-5 catalysts[J].Energy Conversion and Management, 2020, 220:113-124.[16] 丁翔.有机官能团化微孔分子筛的合成和表征研究[D].天津:南开大学, 2002.[17] 王善鹏,王伊蕾,曹亮,等.ZSM-5分子筛中相邻酸性位的酸性强度及其对乙烯质子化反应影响的理论计算[J].催化学报, 2009, 30(4): 305-311.[18] Xing B, Ma J, Li R, et al. Location, distribution and acidity of Al substitution in ZSM-5 with different Si/Al ratio-a periodic DFT computation[J].Catalysis Science & Technology, 2017, 7(23):5694-5708.[19] Wei P F, Fu G B, Mu S L, et al. Effect of acidity on methylation of benzene with methanol catalyzed by HZSM-5:A DFT study[J].中国炼油与石油化工(英文版), 2021, 23(2): 21-27.[20] Li R Y, Yan H, Dang Y,et al.Deoxygenation mechanism of methyl butyrate on HZSM-5: A density functional theory study[J].Molecular Catalysis, 2019(479):7-26.[21] Yang C.A DFT study for catalytic deoxygenation of methyl butyrate on a lewis acid site of ZSM-5 zeolite[J].Catalysts, 2020, 10(11):12-33.[22] 李萌萌,董秀芹,张敏华. P改性ZSM-5分子筛的结构及酸性变化[J].计算机与应用化学, 2012, 29(2):245-248.[23] Lü R, Cao Z, Wang S. Density functional study on models of interaction between phosphorus species and HZSM-5[J]. Journal of Molecular Structure Theochem, 2008, 865 (1): 1-7.[24] Yeh S G, Raymond J.Influence of bronsted-acid and cation-exchange sites on ethene adsorption in ZSM-5[J].Microporous and Mesoporous Materials, 2019, 284:336-342.[25] 任珏,周丹红,李惊鸿,等.密度泛函理论研究分子筛相邻双酸性位对乙烯质子化反应的影响[J].催化学报, 2011, 32(6):1056-1062.[26] Tranca D C, Zimmerman P M, Gomes J, et al.Hexane cracking on ZSM-5 and faujasite zeolites: A QM/MM/QCT study[J].The Journal of Physical Chemistry C, 2015, 119(52): 28836-28853.[27] Chen D D, Liu D Y, Wei J, et al.The effect of acid strength on the mechanism of catalytic pyrolysis reaction of n-hexane in ZSM-5: A DFT study[J]. Applied Catalysis A(General) , 2023,662:195-208.[28] Barone G, Casella G, Giuffrida S, et al.HZSM-5 modified zeolite: Quantum chemical models of acidic sites[J].Journal of Physical Chemistry C, 2007, 111(35):13033-13043.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2024-07-10